The original commit had an issue with Mac OS dylib files. It didn't
handle fat binary dylib files correctly. This patch includes a fix.
A test for that case has already been committed in r225764.
llvm-svn: 226123
This is just a mechanical cleanup, no functionality changed. This just
fixes very minor inconsistencies with how #include lines were spaced and
sorted in LLD.
llvm-svn: 225978
r225764 broke a basic functionality on Mac OS. This change reverts
r225764, r225766, r225767, r225769, r225814, r225816, r225829, and r225832.
llvm-svn: 225859
getNextFile used to have a complex logic to determine which file
should be processed by the Resolver on next iteration.
Now, it is just a sequential accessor to the internal array and
provides no sensible feature.
This patch also removes InputGraph::getGroupSize and InputGraph::
skipGroup to simplify the code.
llvm-svn: 225832
PECOFF was the only user of the API, and the reason why we created
the API is because, although the driver creates a list of input files,
it has no knowledge on what files are being created. It was because
everything was hidden behind the InputGraph abstraction.
Now the driver knows what that's doing. We no longer need this
indirection to get the file list being processed.
llvm-svn: 225767
This is necessary to support linking a basic program which references symbols
outside of the module itself. Add the import thunk for ARM NT style imports.
This allows us to create the reference. However, it is still insufficient to
generate executables that will run due to base relocations not being emitted for
the import.
llvm-svn: 225428
This adds the ability to export symbols from a DLL built for ARMNT. Add this
support first to help work towards adding support for import thunks on Windows
on ARM. In order to generate the exports, add support for
IMAGE_REL_ARM_ADDR32NB relocations.
llvm-svn: 225339
Instead of representing a linker script file as an "InputElement",
parse and evaluate scripts in the driver as we see them.
Linker scripts are not regular input files (regular file is one of
object, archive, or shared library file). They are more like
extended command line options. Linker script handling was needlessly
complicated because of that inappropriate abstraction (besides
excessive class hierarchy -- there is no such thing like ELF linker
script but we had two classes there for some reason.)
LinkerScript was one of a few remaining InputElement subclasses
that can be expanded to multiple files. With this patch, we are one
step closer to retire InputElement.
http://reviews.llvm.org/D6648
llvm-svn: 225330
This is a part of InputGraph cleanup to represent input files as a flat
list of Files (and some meta-nodes for group etc.)
We cannot achieve that goal in one gigantic patch, so I split the task
into small steps as shown below.
(Recap the progress so far: Currently InputGraph contains a list of
InputElements. Each InputElement contain one File (that used to have
multiple Files, but I eliminated that use case in r223867). Files are
currently instantiated in Driver::link(), but I already made a change
to separate file parsing from object instantiation (r224102), so we
can safely instantiate Files when we need them, instead of wrapping
a file with the wrapper class (FileNode class). InputGraph used to
act like a generator class by interpreting groups by itself, but it's
now just a container of a list of InputElements (r223867).)
1. Instantiate Files in the driver and wrap them with WrapperNode.
WrapperNode is a temporary class that allows us to instantiate Files
in the driver while keep using the current InputGraph data structure.
This patch demonstrates how this step 1 looks like, using Core driver
as an example.
2. Do the same thing for the other drivers.
When step 2 is done, an InputGraph consists of GroupEnd objects or
WrapperNodes each of which contains one File. Other types of
FileNode subclasses are removed.
3. Replace InputGraph with std::vector<std::unique_ptr<InputElement>>.
InputGraph is already just a container of list of InputElements,
so this step removes that needless class.
4. Remove WrapperNode.
We need some code cleanup between each step, because many classes
do a bit odd things (e.g. InputGraph::getGroupSize()). I'll straight
things up as I need to.
llvm-svn: 225313
ARM NT assumes a purely THUMB execution, and as such requires that the address
of entry point is adjusted to indicate a thumb entry point. Unconditionally
adjust the AddressOfEntryPoint in the PE header for PE/COFF ARM as we only
support ARM NT at the moment.
llvm-svn: 225139
ARM NT assumes a THUMB only environment. As such, any address that is detected
as residing in an executable section is adjusted to have its bottom bit set to
indicate THUMB in case of a mode exchange.
Although the testing here seems insufficient (missing the negative cases) the
existing test cases for the IMAGE_REL_ARM_{ADDR32,MOV32T} are relevant as they
ensure that we do not incorrectly set the bit.
llvm-svn: 225104
This adds support for IMAGE_REL_ARM_BRANCH24T relocations. Similar to the
IMAGE_REL_ARM_BLX32T relocation, this relocation requires munging an
instruction. The instruction encoding is quite similar, allowing us to reuse
the same munging implementation. This is needed by the entry point stubs for
modules provided by MSVCRT.
llvm-svn: 225082
This adds support for IMAGE_REL_ARM_BLX23T relocations. Similar to the
IMAGE_REL_ARM_MOV32T relocation, this relocation requires munging an
instruction. This inches us closer to supporting a basic hello world
application.
llvm-svn: 225081
This adds support for the IMAGE_REL_ARM_MOV32T relocation. This is one of the
most complicated relocations for the Window on ARM target. It involves
re-encoding an instruction to contain an immediate value which is the relocation
target.
llvm-svn: 225072
Correct the yaml definition for the object. Adjust the symbol storage class
which was flipped for the two symbols, resulting in the link failure due to the
symbol missing. Adjust the virtual address of the section. This ripples into
the test case, since the data has been shifted up by 4 bytes.
llvm-svn: 225058
This implements the IMAGE_REL_ARM_ADDR32 relocation. There are still a few more
relocation types that need to resolved before lld can even attempt to link a
trivial program for Windows on ARM.
llvm-svn: 225057
This teaches lld about the ARM NT object types. Add a trivial test to ensure
that it can handle ARM NT object file inputs. It is still unable to perform the
necessary relocations for ARM NT, but this allows the linker to at least read
the objects.
llvm-svn: 225052
strings don't mix so easily. This fixes the last remaining failure
I have in 'check-all' on a system with both Python3 and and Python2
installed.
llvm-svn: 224947
allows it to support multilib suffixed hosts using lib64, etc. This
variable is now available both in the direct LLVM build and from the
LLVMConfig.cmake file used by standalone builds.
llvm-svn: 224925
If a regular symbol has microMIPS-bit we need to stop linking. Now the
LLD does not check the `applyRelocation` return value and continues
linking anyway. As a temporary workaround use the `llvm_unreachable`
call to stop the linker.
llvm-svn: 224831
The LLD output in the YAML mode depends on LLD_RUN_ROUNDTRIP_TEST
environment variable. Do not check unimportant YAML items like section-name.
llvm-svn: 224830
Summary:
Fix the binary file reader to properly read dyld version info.
Update the install_name test case to properly test the binary reader. We can't use '-print_atoms' as the output format is 'native' yaml and it does not contains the dyld current and compatibility versions.
Also change the timestamp value of LD_ID_DYLD to match the one generated by ld64.
The dynamic linker (dyld) used to expects different values for timestamp in LD_ID_DYLD and LD_LOAD_DYLD for prebound images. While prebinding is deprecated, we should probably keep it safe and match ld64.
Reviewers: kledzik
Subscribers: llvm-commits
Projects: #lld
Differential Revision: http://reviews.llvm.org/D6736
llvm-svn: 224681
Summary:
Work on adding -rpath support to the mach-o linker.
This patch is based on the ld64 behavior for the command line option validation.
It includes a basic test to check that the LC_RPATH load commands are properly generated when that option is used.
It also add LC_RPATH support to the binary reader, but I don't know how to test it though.
Reviewers: kledzik
Subscribers: llvm-commits
Projects: #lld
Differential Revision: http://reviews.llvm.org/D6724
llvm-svn: 224544
ReaderErrorCategory was used only at one place. We now have a
DynamicErrorCategory for this kind of one-time error, so use it.
The calling function doesn't really care the type of an error, so
ReaderErrorCategory was actually dead code.
llvm-svn: 224245