When we have a diamond ifcvt the fallthough block will have a branch at the end
of it that disappears when predicated, so discount it from the predication cost.
Differential Revision: https://reviews.llvm.org/D34952
llvm-svn: 307788
The current heuristic in isProfitableToIfCvt assumes we have a branch predictor,
and so gives the wrong answer in some cases when we don't. This patch adds a
subtarget feature to indicate that a subtarget has no branch predictor, and
changes the heuristic in isProfitableToiIfCvt when it's present. This gives a
slight overall improvement in a set of embedded benchmarks on Cortex-M4 and
Cortex-M33.
Differential Revision: https://reviews.llvm.org/D34398
llvm-svn: 306547
The benchmarking summarized in
http://lists.llvm.org/pipermail/llvm-dev/2017-May/113525.html showed
this is beneficial for a wide range of cores.
As is to be expected, quite a few small adaptations are needed to the
regressions tests, as the difference in scheduling results in:
- Quite a few small instruction schedule differences.
- A few changes in register allocation decisions caused by different
instruction schedules.
- A few changes in IfConversion decisions, due to a difference in
instruction schedule and/or the estimated cost of a branch mispredict.
llvm-svn: 306514
This has been deprecated since ARMARM v7-AR, release C.b, published back
in 2012.
This also removes test/CodeGen/Thumb2/ifcvt-neon.ll that originally was
introduced to check that conditionalization of Neon instructions did
happen when generating Thumb2. However, the test had evolved and was no
longer testing that. Rather than trying to adapt that test, this commit
introduces test/CodeGen/Thumb2/ifcvt-neon-deprecated.mir, since we can
now use the MIR framework to write nicer/more maintainable tests.
llvm-svn: 305998
Summary:
In SelectionDAG, when a store is immediately chained to another store
to the same address, elide the first store as it has no observable
effects. This is causes small improvements dealing with intrinsics
lowered to stores.
Test notes:
* Many testcases overwrite store addresses multiple times and needed
minor changes, mainly making stores volatile to prevent the
optimization from optimizing the test away.
* Many X86 test cases optimized out instructions associated with
associated with va_start.
* Note that test_splat in CodeGen/AArch64/misched-stp.ll no longer has
dependencies to check and can probably be removed and potentially
replaced with another test.
Reviewers: rnk, john.brawn
Subscribers: aemerson, rengolin, qcolombet, jyknight, nemanjai, nhaehnle, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D33206
llvm-svn: 303198
Shrink-wrapping uses post-dominators to find a restore point that
post-dominates all the uses of CSR / stack.
The way dominator trees are modeled in LLVM today is that unreachable
blocks are not present in a generic dominator tree, so, an unreachable node is
dominated by anything: include/llvm/Support/GenericDomTree.h:467.
Since for post-dominators, a no-return block is considered
"unreachable", calling findNearestCommonDominator on an unreachable node
A and a non-unreachable node B, will return B, which can be false. If we
find such node, we bail out since there is no good restore point
available.
rdar://problem/30186931
llvm-svn: 303130
During the optimisation of jump tables in the constant island pass,
an extra ADD could be left over, now dead but not removed.
Differential Revision: https://reviews.llvm.org/D31389
llvm-svn: 299634
I previously removed the T2XtPk feature from the ARM backend, but it
looks like I missed some of the tests that were using the feature.
Differential Revision: https://reviews.llvm.org/D30778
llvm-svn: 297386
Removed the HasT2ExtractPack feature and replaced its references
with HasDSP. This then allows the Thumb2 extend instructions to be
selected for ARMv8M +dsp. These instruction descriptions have also
been refactored and more target tests have been added for their isel.
Differential Revision: https://reviews.llvm.org/D29623
llvm-svn: 295452
When generating a floating point comparison we currently unconditionally
generate VCMPE. This has the sideeffect of setting the cumulative Invalid
bit in FPSCR if any of the operands are QNaN.
It is expected that use of a relational predicate on a QNaN value should
raise Invalid. Quoting from the C standard:
The relational and equality operators support the usual mathematical
relationships between numeric values. For any ordered pair of numeric
values exactly one of relationships the less, greater, equal and is true.
Relational operators may raise the floating-point exception when argument
values are NaNs.
The standard doesn't explicitly state the expectation for equality operators,
but the implication and obvious expectation is that equality operators
should not raise Invalid on a QNaN input, as those predicates are wholly
defined on unordered inputs (to return not equal).
Therefore, add a new operand to ARMISD::FPCMP and FPCMPZ indicating if
QNaN should raise Invalid, and pipe that through to TableGen.
llvm-svn: 294945
When choosing the best successor for a block, ordinarily we would have preferred
a block that preserves the CFG unless there is a strong probability the other
direction. For small blocks that can be duplicated we now skip that requirement
as well, subject to some simple frequency calculations.
Differential Revision: https://reviews.llvm.org/D28583
llvm-svn: 293716
The Requires class overrides the target requirements of an instruction,
rather than adding to them, so all ARM instructions need to include the
IsARM predicate when they have overwitten requirements.
This caused the swp and swpb instructions to be allowed in thumb mode
assembly, and the ARM encoding of CDP to be selected in codegen (which
is different for conditional instructions).
Differential Revision: https://reviews.llvm.org/D29283
llvm-svn: 293634
GCC changes the CC between the user-code and the builtins based on the
value of `-target` rather than `-mfloat-abi`. When a HF target is used,
the VFP variant of the AAPCS CC is used. Otherwise, the AAPCS variant
is used. In all cases, the AEABI functions use the AAPCS CC. Adjust
the calling convention based on the target.
Resolves PR30543!
llvm-svn: 291909
This reverts commit ada6595a526d71df04988eb0a4b4fe84df398ded.
This needs a simple probability check because there are some cases where it is
not profitable.
llvm-svn: 291695
When choosing the best successor for a block, ordinarily we would have preferred
a block that preserves the CFG unless there is a strong probability the other
direction. For small blocks that can be duplicated we now skip that requirement
as well.
Differential revision: https://reviews.llvm.org/D27742
llvm-svn: 291609
1.Fix pessimized case in FIXME.
2.Add tests for it.
3.The canonicalisation on shifts results in different sequence for
tests of machine-licm.Correct some check lines.
Differential Revision: https://reviews.llvm.org/D27916
llvm-svn: 290410
This is essentially a recommit of r285893, but with a correctness fix. The
problem of the original commit was that this:
bic r5, r7, #31
cbz r5, .LBB2_10
got rewritten into:
lsrs r5, r7, #5
beq .LBB2_10
The result in destination register r5 is not the same and this is incorrect
when r5 is not dead. So this fix includes checking the uses of the AND
destination register. And also, compared to the original commit, some regression
tests didn't need changing anymore because of this extra check.
For completeness, this was the original commit message:
For the common pattern (CMPZ (AND x, #bitmask), #0), we can do some more
efficient instruction selection if the bitmask is one consecutive sequence of
set bits (32 - clz(bm) - ctz(bm) == popcount(bm)).
1) If the bitmask touches the LSB, then we can remove all the upper bits and
set the flags by doing one LSLS.
2) If the bitmask touches the MSB, then we can remove all the lower bits and
set the flags with one LSRS.
3) If the bitmask has popcount == 1 (only one set bit), we can shift that bit
into the sign bit with one LSLS and change the condition query from NE/EQ to
MI/PL (we could also implement this by shifting into the carry bit and
branching on BCC/BCS).
4) Otherwise, we can emit a sequence of LSLS+LSRS to remove the upper and lower
zero bits of the mask.
1-3 require only one 16-bit instruction and can elide the CMP. 4 requires two
16-bit instructions but can elide the CMP and doesn't require materializing a
complex immediate, so is also a win.
Differential Revision: https://reviews.llvm.org/D27761
llvm-svn: 289794
This recommits r281323, which was backed out for two reasons. One, a selfhost failure, and two, it apparently caused Chromium failures. Actually, the latter was a red herring. The log has expired from the former, but I suspect that was a red herring too (actually caused by another problematic patch of mine). Therefore reapplying, and will watch the bots like a hawk.
For the common pattern (CMPZ (AND x, #bitmask), #0), we can do some more efficient instruction selection if the bitmask is one consecutive sequence of set bits (32 - clz(bm) - ctz(bm) == popcount(bm)).
1) If the bitmask touches the LSB, then we can remove all the upper bits and set the flags by doing one LSLS.
2) If the bitmask touches the MSB, then we can remove all the lower bits and set the flags with one LSRS.
3) If the bitmask has popcount == 1 (only one set bit), we can shift that bit into the sign bit with one LSLS and change the condition query from NE/EQ to MI/PL (we could also implement this by shifting into the carry bit and branching on BCC/BCS).
4) Otherwise, we can emit a sequence of LSLS+LSRS to remove the upper and lower zero bits of the mask.
1-3 require only one 16-bit instruction and can elide the CMP. 4 requires two 16-bit instructions but can elide the CMP and doesn't require materializing a complex immediate, so is also a win.
llvm-svn: 285893
[Reapplying r284580 and r285917 with fix and testing to ensure emitted jump tables for Thumb-1 have 4-byte alignment]
The TBB and TBH instructions in Thumb-2 allow jump tables to be compressed into sequences of bytes or shorts respectively. These instructions do not exist in Thumb-1, however it is possible to synthesize them out of a sequence of other instructions.
It turns out this sequence is so short that it's almost never a lose for performance and is ALWAYS a significant win for code size.
TBB example:
Before: lsls r0, r0, #2 After: add r0, pc
adr r1, .LJTI0_0 ldrb r0, [r0, #6]
ldr r0, [r0, r1] lsls r0, r0, #1
mov pc, r0 add pc, r0
=> No change in prologue code size or dynamic instruction count. Jump table shrunk by a factor of 4.
The only case that can increase dynamic instruction count is the TBH case:
Before: lsls r0, r4, #2 After: lsls r4, r4, #1
adr r1, .LJTI0_0 add r4, pc
ldr r0, [r0, r1] ldrh r4, [r4, #6]
mov pc, r0 lsls r4, r4, #1
add pc, r4
=> 1 more instruction in prologue. Jump table shrunk by a factor of 2.
So there is an argument that this should be disabled when optimizing for performance (and a TBH needs to be generated). I'm not so sure about that in practice, because on small cores with Thumb-1 performance is often tied to code size. But I'm willing to turn it off when optimizing for performance if people want (also note that TBHs are fairly rare in practice!)
llvm-svn: 285690
The TBB and TBH instructions in Thumb-2 allow jump tables to be compressed into sequences of bytes or shorts respectively. These instructions do not exist in Thumb-1, however it is possible to synthesize them out of a sequence of other instructions.
It turns out this sequence is so short that it's almost never a lose for performance and is ALWAYS a significant win for code size.
TBB example:
Before: lsls r0, r0, #2 After: add r0, pc
adr r1, .LJTI0_0 ldrb r0, [r0, #6]
ldr r0, [r0, r1] lsls r0, r0, #1
mov pc, r0 add pc, r0
=> No change in prologue code size or dynamic instruction count. Jump table shrunk by a factor of 4.
The only case that can increase dynamic instruction count is the TBH case:
Before: lsls r0, r4, #2 After: lsls r4, r4, #1
adr r1, .LJTI0_0 add r4, pc
ldr r0, [r0, r1] ldrh r4, [r4, #6]
mov pc, r0 lsls r4, r4, #1
add pc, r4
=> 1 more instruction in prologue. Jump table shrunk by a factor of 2.
So there is an argument that this should be disabled when optimizing for performance (and a TBH needs to be generated). I'm not so sure about that in practice, because on small cores with Thumb-1 performance is often tied to code size. But I'm willing to turn it off when optimizing for performance if people want (also note that TBHs are fairly rare in practice!)
llvm-svn: 284580
Reverts r283938 to reinstate r283867 with a fix.
The original change had an ArrayRef referring to a destroyed temporary
initializer list. Use plain C arrays instead.
llvm-svn: 283942
The high registers are not allocatable in Thumb1 functions, but they
could still be used by inline assembly, so we need to save and restore
the callee-saved high registers (r8-r11) in the prologue and epilogue.
This is complicated by the fact that the Thumb1 push and pop
instructions cannot access these registers. Therefore, we have to move
them down into low registers before pushing, and move them back after
popping into low registers.
In most functions, we will have low registers that are also being
pushed/popped, which we can use as the temporary registers for
saving/restoring the high registers. However, this is not guaranteed, so
we may need to push some extra low registers to ensure that the high
registers can be saved/restored. For correctness, it would be sufficient
to use just one low register, but if we have enough low registers
available then we only need one push/pop instruction, rather than one
per high register.
We can also use the argument/return registers when they are not live,
and the link register when saving (but not restoring), reducing the
number of extra registers we need to push.
There are still a few extreme edge cases where we need two push/pop
instructions, because not enough low registers can be made live in the
prologue or epilogue.
In addition to the regression tests included here, I've also tested this
using a script to generate functions which clobber different
combinations of registers, have different numbers of argument and return
registers (including variadic arguments), allocate different fixed sized
objects on the stack, and do or don't use variable sized allocas and the
__builtin_return_address intrinsic (all of which affect the available
registers in the prologue and epilogue). I ran these functions in a test
harness which verifies that all of the callee-saved registers are
correctly preserved.
Differential Revision: https://reviews.llvm.org/D24228
llvm-svn: 283867
For the common pattern (CMPZ (AND x, #bitmask), #0), we can do some more efficient instruction selection if the bitmask is one consecutive sequence of set bits (32 - clz(bm) - ctz(bm) == popcount(bm)).
1) If the bitmask touches the LSB, then we can remove all the upper bits and set the flags by doing one LSLS.
2) If the bitmask touches the MSB, then we can remove all the lower bits and set the flags with one LSRS.
3) If the bitmask has popcount == 1 (only one set bit), we can shift that bit into the sign bit with one LSLS and change the condition query from NE/EQ to MI/PL (we could also implement this by shifting into the carry bit and branching on BCC/BCS).
4) Otherwise, we can emit a sequence of LSLS+LSRS to remove the upper and lower zero bits of the mask.
1-3 require only one 16-bit instruction and can elide the CMP. 4 requires two 16-bit instructions but can elide the CMP and doesn't require materializing a complex immediate, so is also a win.
llvm-svn: 281323
For the common pattern (CMPZ (AND x, #bitmask), #0), we can do some more efficient instruction selection if the bitmask is one consecutive sequence of set bits (32 - clz(bm) - ctz(bm) == popcount(bm)).
1) If the bitmask touches the LSB, then we can remove all the upper bits and set the flags by doing one LSLS.
2) If the bitmask touches the MSB, then we can remove all the lower bits and set the flags with one LSRS.
3) If the bitmask has popcount == 1 (only one set bit), we can shift that bit into the sign bit with one LSLS and change the condition query from NE/EQ to MI/PL (we could also implement this by shifting into the carry bit and branching on BCC/BCS).
4) Otherwise, we can emit a sequence of LSLS+LSRS to remove the upper and lower zero bits of the mask.
1-3 require only one 16-bit instruction and can elide the CMP. 4 requires two 16-bit instructions but can elide the CMP and doesn't require materializing a complex immediate, so is also a win.
llvm-svn: 281215
The CMPZ #0 disappears during peepholing, leaving just a tADDi3, tADDi8 or t2ADDri. This avoids having to materialize the expensive negative constant in Thumb-1, and allows a shrinking from a 32-bit CMN to a 16-bit ADDS in Thumb-2.
llvm-svn: 281040
The original commit was too aggressive about marking LibCalls as AAPCS. The
libcalls contain libc/libm/libunwind calls which are not AAPCS, but C.
llvm-svn: 280833
All of the builtins are designed to be invoked with ARM AAPCS CC even on ARM
AAPCS VFP CC hosts. Tweak the default initialisation to ARM AAPCS CC rather
than C CC for ARM/thumb targets.
The changes to the tests are necessary to ensure that the calling convention for
the lowered library calls are honoured. Furthermore, these adjustments cause
certain branch invocations to change to branch-and-link since the returned value
needs to be moved across registers (d0 -> r0, r1).
llvm-svn: 280683
The cost of predicating a diamond is only the instructions that are not shared
between the two branches. Additionally If a predicate clobbering instruction
occurs in the shared portion of the branches (e.g. a cond move), it may still
be possible to if convert the sub-cfg. This change handles these two facts by
rescanning the non-shared portion of a diamond sub-cfg to recalculate both the
predication cost and whether both blocks are pred-clobbering.
Fixed 2 bugs before recommitting. Branch instructions must be compared and found
identical before diamond conversion. Also, predicate-clobbering instructions in
the shared prefix disqualifies a potential diamond conversion. Includes tests
for both.
llvm-svn: 279670
There is not an official documented ABI for frame pointers in Thumb2,
but we should try to emit something which is useful.
We use r7 as the frame pointer for Thumb code, which currently means
that if a function needs to save a high register (r8-r11), it will get
pushed to the stack between the frame pointer (r7) and link register
(r14). This means that while a stack unwinder can follow the chain of
frame pointers up the stack, it cannot know the offset to lr, so does
not know which functions correspond to the stack frames.
To fix this, we need to push the callee-saved registers in two batches,
with the first push saving the low registers, fp and lr, and the second
push saving the high registers. This is already implemented, but
previously only used for iOS. This patch turns it on for all Thumb2
targets when frame pointers are required by the ABI, and the frame
pointer is r7 (Windows uses r11, so this isn't a problem there). If
frame pointer elimination is enabled we still emit a single push/pop
even if we need a frame pointer for other reasons, to avoid increasing
code size.
We must also ensure that lr is pushed to the stack when using a frame
pointer, so that we end up with a complete frame record. Situations that
could cause this were rare, because we already push lr in most
situations so that we can return using the pop instruction.
Differential Revision: https://reviews.llvm.org/D23516
llvm-svn: 279506
The following function currently relies on tail-merging for if
conversion to succeed. The common tail of cond_true and cond_false is
extracted, and this then forms a diamond pattern that can be
successfully if converted.
If this block does not get extracted, either because tail-merging is
disabled or the threshold is higher, we should still recognize this
pattern and if-convert it.
Fixed a regression in the original commit. Need to un-reverse branches after
reversing them, or other conversions go awry.
Regression on self-hosting bots with no obvious explanation. Tidied up range
handling to be more obviously correct, but there was no smoking gun.
define i32 @t2(i32 %a, i32 %b) nounwind {
entry:
%tmp1434 = icmp eq i32 %a, %b ; <i1> [#uses=1]
br i1 %tmp1434, label %bb17, label %bb.outer
bb.outer: ; preds = %cond_false, %entry
%b_addr.021.0.ph = phi i32 [ %b, %entry ], [ %tmp10, %cond_false ]
%a_addr.026.0.ph = phi i32 [ %a, %entry ], [ %a_addr.026.0, %cond_false ]
br label %bb
bb: ; preds = %cond_true, %bb.outer
%indvar = phi i32 [ 0, %bb.outer ], [ %indvar.next, %cond_true ]
%tmp. = sub i32 0, %b_addr.021.0.ph
%tmp.40 = mul i32 %indvar, %tmp.
%a_addr.026.0 = add i32 %tmp.40, %a_addr.026.0.ph
%tmp3 = icmp sgt i32 %a_addr.026.0, %b_addr.021.0.ph
br i1 %tmp3, label %cond_true, label %cond_false
cond_true: ; preds = %bb
%tmp7 = sub i32 %a_addr.026.0, %b_addr.021.0.ph
%tmp1437 = icmp eq i32 %tmp7, %b_addr.021.0.ph
%indvar.next = add i32 %indvar, 1
br i1 %tmp1437, label %bb17, label %bb
cond_false: ; preds = %bb
%tmp10 = sub i32 %b_addr.021.0.ph, %a_addr.026.0
%tmp14 = icmp eq i32 %a_addr.026.0, %tmp10
br i1 %tmp14, label %bb17, label %bb.outer
bb17: ; preds = %cond_false, %cond_true, %entry
%a_addr.026.1 = phi i32 [ %a, %entry ], [ %tmp7, %cond_true ], [ %a_addr.026.0, %cond_false ]
ret i32 %a_addr.026.1
}
Without tail-merging or diamond-tail if conversion:
LBB1_1: @ %bb
@ =>This Inner Loop Header: Depth=1
cmp r0, r1
ble LBB1_3
@ BB#2: @ %cond_true
@ in Loop: Header=BB1_1 Depth=1
subs r0, r0, r1
cmp r1, r0
it ne
cmpne r0, r1
bgt LBB1_4
LBB1_3: @ %cond_false
@ in Loop: Header=BB1_1 Depth=1
subs r1, r1, r0
cmp r1, r0
bne LBB1_1
LBB1_4: @ %bb17
bx lr
With diamond-tail if conversion, but without tail-merging:
@ BB#0: @ %entry
cmp r0, r1
it eq
bxeq lr
LBB1_1: @ %bb
@ =>This Inner Loop Header: Depth=1
cmp r0, r1
ite le
suble r1, r1, r0
subgt r0, r0, r1
cmp r1, r0
bne LBB1_1
@ BB#2: @ %bb17
bx lr
llvm-svn: 279168
Created a Thumb2 predicated pattern matcher that uses Thumb2 and
HasT2ExtractPack and used it to redefine the patterns for sxta{b|h}
and uxta{b|h}. Also used the similar patterns to fill in isel pattern
gaps for the corresponding instructions in the ARM backend.
The patch is mainly changes to tests since most of this functionality
appears not to have been tested.
Differential Revision: https://reviews.llvm.org/D23273
llvm-svn: 278207
The important thing I was missing was ensuring newly added constants were kept in topological order. Repositioning the node is correct if the constant is newly added (so it has no topological ordering) but wrong if it already existed - positioning it next in the worklist would break the topological ordering.
Original commit message:
[Thumb] Select a BIC instead of AND if the immediate can be encoded more optimally negated
If an immediate is only used in an AND node, it is possible that the immediate can be more optimally materialized when negated. If this is the case, we can negate the immediate and use a BIC instead;
int i(int a) {
return a & 0xfffffeec;
}
Used to produce:
ldr r1, [CONSTPOOL]
ands r0, r1
CONSTPOOL: 0xfffffeec
And now produces:
movs r1, #255
adds r1, #20 ; Less costly immediate generation
bics r0, r1
llvm-svn: 274543
We were using DAG->getConstant instead of DAG->getTargetConstant. This meant that we could inadvertently increase the use count of a constant if stars aligned, which it did in this testcase. Increasing the use count of the constant could cause ISel to fall over (because DAGToDAG lowering assumed the constant had only one use!)
Original commit message:
[Thumb] Select a BIC instead of AND if the immediate can be encoded more optimally negated
If an immediate is only used in an AND node, it is possible that the immediate can be more optimally materialized when negated. If this is the case, we can negate the immediate and use a BIC instead;
int i(int a) {
return a & 0xfffffeec;
}
Used to produce:
ldr r1, [CONSTPOOL]
ands r0, r1
CONSTPOOL: 0xfffffeec
And now produces:
movs r1, #255
adds r1, #20 ; Less costly immediate generation
bics r0, r1
llvm-svn: 274510
Tail merge was making the assumption that a layout successor or
predecessor was always a cfg successor/predecessor. Remove that
assumption. Changes to tests are necessary because the errant cfg edges
were preventing optimizations.
llvm-svn: 273700