Allow targets to expand COPY and other standard pseudo-instructions
before they are expanded with copyPhysReg().
This allows the target to examine the COPY instruction for extra
operands indicating it can be widened to a preferable super-register
copy. See the ARM -widen-vmovs option.
llvm-svn: 141578
PhysReg operands are not allowed to have sub-register indices at all.
For virtual registers with sub-reg indices, check that all registers in
the register class support the sub-reg index.
llvm-svn: 141220
EXTRACT_SUBREG is emitted as %dst = COPY %src:sub, so there is no need to
constrain the %dst register class. RegisterCoalescer will apply the
necessary constraints if it decides to eliminate the COPY.
The %src register class does need to be constrained to something with
the right sub-registers, though. This is currently done manually with
COPY_TO_REGCLASS nodes. They can possibly be removed after this patch.
llvm-svn: 141207
The register class created by INSERT_SUBREG and SUBREG_TO_REG must be
legal and support the SubIdx sub-registers.
The new getSubClassWithSubReg() hook can compute that.
This may create INSERT_SUBREG instructions defining a larger register
class than the sub-register being inserted. That is OK,
RegisterCoalescer will constrain the register class as needed when it
eliminates the INSERT_SUBREG instructions.
llvm-svn: 141198
TwoAddressInstructionPass should annotate instructions with <undef>
flags when it lower REG_SEQUENCE instructions. LiveIntervals should not
be in the business of modifying code (except for kill flags, perhaps).
llvm-svn: 141187
For example:
%vreg10:dsub_0<def,undef> = COPY %vreg1
%vreg10:dsub_1<def> = COPY %vreg2
is rewritten as:
%D2<def> = COPY %D0, %Q1<imp-def>
%D3<def> = COPY %D1, %Q1<imp-use,kill>, %Q1<imp-def>
The first COPY doesn't care about the previous value of %Q1, so it
doesn't read that register.
The second COPY is a partial redefinition of %Q1, so it implicitly kills
and redefines that register.
This makes it possible to recognize instructions that can harmlessly
clobber the full super-register. The write and don't read the
super-register.
llvm-svn: 141139
RegisterCoalescer can create sub-register defs when it is joining a
register with a sub-register. Add <undef> flags to these new
sub-register defs where appropriate.
llvm-svn: 141138
The <undef> flag says that a MachineOperand doesn't read its register,
or doesn't depend on the previous value of its register.
A full register def never depends on the previous register value. A
partial register def may depend on the previous value if it is intended
to update part of a register.
For example:
%vreg10:dsub_0<def,undef> = COPY %vreg1
%vreg10:dsub_1<def> = COPY %vreg2
The first copy instruction defines the full %vreg10 register with the
bits not covered by dsub_0 defined as <undef>. It is not considered a
read of %vreg10.
The second copy modifies part of %vreg10 while preserving the rest. It
has an implicit read of %vreg10.
This patch adds a MachineOperand::readsReg() method to determine if an
operand reads its register.
Previously, this was modelled by adding a full-register <imp-def>
operand to the instruction. This approach makes it possible to
determine directly from a MachineOperand if it reads its register. No
scanning of MI operands is required.
llvm-svn: 141124
and the alignment is 0 (i.e., it's defined globally in one file and declared in
another file) it could get an alignment which is larger than the ABI allows for
that type, resulting in aligned moves being used for unaligned loads.
For instance, in file A.c:
struct S s;
In file B.c:
struct {
// something long
};
extern S s;
void foo() {
struct S p = s;
// ...
}
this copy is a 'memcpy' which is turned into a series of 'movaps' instructions
on X86. But this is wrong, because 'struct S' has alignment of 4, not 16.
llvm-svn: 140902
This helps with porting code from 2.9 to 3.0 as TargetSelect.h changed location,
and if you include the old one by accident you will trigger this assert.
llvm-svn: 140848
The function needs to scan the implicit operands anyway, so no
performance is won by caching the number of implicit operands added to
an instruction.
This also fixes a bug when adding operands after an implicit operand has
been added manually. The NumImplicitOps count wasn't kept up to date.
MachineInstr::addOperand() will now consistently place all explicit
operands before all the implicit operands, regardless of the order they
are added. It is possible to change an MI opcode and add additional
explicit operands. They will be inserted before any existing implicit
operands.
The only exception is inline asm instructions where operands are never
reordered. This is because of a hack that marks explicit clobber regs
on inline asm as <implicit-def> to please the fast register allocator.
This hack can go away when InstrEmitter and FastIsel can add exact
<dead> flags to physreg defs.
llvm-svn: 140744
Upon further review, most of the EH code should remain written at the IR
level. The part which breaks SSA form is the dispatch table, so that part will
be moved to the back-end.
llvm-svn: 140730
This intrinsic is used to pass the index of the function context to the back-end
for further processing. The back-end is in charge of filling in the rest of the
entries.
llvm-svn: 140676
The DWARF exception pass uses the call site information, which is set up here. A
pre-RA pass is too late for it to use this information. So create and setup the
function context here, and then insert the call site values here (and map the
call sites for the DWARF EH pass). This is simpler than the original pass, and
doesn't make the CFG lose its SSA-ness.
It's a win-win-win-win-lose-win-win situation.
llvm-svn: 140675
current IR-level pass.
The old SjLj EH pass has some problems, especially with the new EH model. Most
significantly, it violates some of the new restrictions the new model has. For
instance, the 'dispatch' table wants to jump to the landing pad, but we cannot
allow that because only an invoke's unwind edge can jump to a landing pad. This
requires us to mangle the code something awful. In addition, we need to keep the
now dead landingpad instructions around instead of CSE'ing them because the
DWARF emitter uses that information (they are dead because no control flow edge
will execute them - the control flow edge from an invoke's unwind is superceded
by the edge coming from the dispatch).
Basically, this pass belongs not at the IR level where SSA is king, but at the
code-gen level, where we have more flexibility.
llvm-svn: 140646
Many targets use pseudo instructions to help register allocation. Like
the COPY instruction, these pseudos can be expanded after register
allocation. The early expansion can make life easier for PEI and the
post-ra scheduler.
This patch adds a hook that is called for all remaining pseudo
instructions from the ExpandPostRAPseudos pass.
llvm-svn: 140472
SDNodes may return values which are wider than the incoming element types. In
this patch we fix the integer promotion of these nodes.
Fixes spill-q.ll when running -promote-elements.
llvm-svn: 140471
I'll fix the file contents in the next commit.
This pass is currently expanding the COPY and SUBREG_TO_REG pseudos. I
am going to add a hook so targets can expand more pseudo-instructions
after register allocation.
Many targets have pseudo-instructions that assist the register
allocator. They can be expanded after register allocation, before PEI
and PostRA scheduling.
llvm-svn: 140469
(this is always the case for scalars), otherwise use the promoted result type.
Fix test/CodeGen/X86/vsplit-and.ll when promote-elements is enabled.
llvm-svn: 140464
When generating the trunc-store of i1's, we need to use the vector type and not
the scalar type.
This patch fixes the assertion in CodeGen/Generic/bool-vector.ll when
running with -promote-elements.
llvm-svn: 140463
DecomposeMERGE_VALUES to "know" that results are legalized in
a particular order, by passing it the number of the result
being legalized (the type legalization core provides this, it
just needs to be passed on).
llvm-svn: 140373
integer-promotion of CONCAT_VECTORS.
Test: test/CodeGen/X86/widen_shuffle-1.ll
This patch fixes the above tests (when running in with -promote-elements).
llvm-svn: 140372
Sometimes register class constraints are trivial, like GR32->GR32_NOSP,
or GPR->rGPR. Teach InstrEmitter to simply constrain the virtual
register instead of emitting a copy in these cases.
Normally, these copies are handled by the coalescer. This saves some
coalescer work.
llvm-svn: 140340
The function will refuse to use a register class with fewer registers
than MinNumRegs. This can be used by clients to avoid accidentally
increase register pressure too much.
The default value of MinNumRegs=0 doesn't affect how constrainRegClass()
works.
llvm-svn: 140339
Few weeks ago, llvm completely inverted the debug info graph. Earlier each debug info node used to keep track of its compile unit, now compile unit keeps track of important nodes. One impact of this change is that the global variable's do not have any context, which should be checked before deciding to use AT_specification DIE.
llvm-svn: 140282
This is still a hack until we can teach tblgen to generate the
optional CPSR operand rather than an implicit CPSR def. But the
strangeness is now limited to the selection DAG. ADD/SUB MI's no
longer have implicit CPSR defs, nor do we allow flag setting variants
of these opcodes in machine code. There are several corner cases to
consider, and getting one wrong would previously lead to nasty
miscompilation. It's not the first time I've debugged one, so this
time I added enough verification to ensure it won't happen again.
llvm-svn: 140228
No functionality change. The hook makes it explicit which patterns
require "special" handling. i.e. it self-documents tblgen
deficiencies. I plan to add verification in ExpandISelPseudos and
Thumb2SizeReduce to catch any missing hasPostISelHooks. Otherwise it's
too fragile.
llvm-svn: 140160
Modified ARMISelLowering::AdjustInstrPostInstrSelection to handle the
full gamut of CPSR defs/uses including instructins whose "optional"
cc_out operand is not really optional. This allowed removal of the
hasPostISelHook to simplify the .td files and make the implementation
more robust.
Fixes rdar://10137436: sqlite3 miscompile
llvm-svn: 140134
The leaveIntvAfter() function normally inserts a back-copy after the
requested instruction, making the back-copy kill the live range.
In spill mode, try to insert the back-copy before the last use instead.
That means the last use becomes the kill instead of the back-copy. This
lowers the register pressure because the last use can now redefine the
same register it was reading.
This will also improve compile time: The back-copy isn't a kill, so
hoisting it in hoistCopiesForSize() won't force a recomputation of the
source live range. Similarly, if the back-copy isn't hoisted by the
splitter, the spiller will not attempt hoisting it locally.
llvm-svn: 139883
If the source register is live after the copy being spilled, there is no
point to hoisting it. Hoisting inside a basic block only serves to
resolve interferences by shortening the live range of the source.
llvm-svn: 139882
When -split-spill-mode is enabled, spill hoisting is performed by
SplitKit instead of by InlineSpiller. This hidden command line option
is for testing the splitter spill mode.
llvm-svn: 139845
When traceSiblingValue() encounters a PHI-def value created by live
range splitting, don't look at all the predecessor blocks. That can be
very expensive in a complicated CFG.
Instead, consider that all the non-PHI defs jointly dominate all the
PHI-defs. Tracing directly to all the non-PHI defs is much faster that
zipping around in the CFG when there are many PHIs with many
predecessors.
This significantly improves compile time for indirectbr interpreters.
llvm-svn: 139797
Blocks with multiple PHI successors only need to go on the worklist
once. Use a SmallPtrSet to track the live-out blocks that have already
been handled. This is a lot faster than the two live range check we
would otherwise do.
Also stop recomputing hasPHIKill flags. Like RenumberValues(), it is
conservatively correct to leave them in, and they are not used for
anything important.
llvm-svn: 139792
It does, after all.
RemoveCopyByCommutingDef rewrites the uses of one particular value
number in A. It doesn't know how to rewrite phi uses, so there can't be
any.
llvm-svn: 139787
There is only one legitimate use remaining, in addIntervalsForSpills().
All other calls to hasPHIKill() are only used to update PHIKill flags.
The addIntervalsForSpills() function is part of the old spilling
framework, only used by linearscan.
llvm-svn: 139783
Instead, let HasOtherReachingDefs() test for defs in B that overlap any
phi-defs in A as well. This test is slightly different, but almost
identical.
A perfectly precise test would only check those phi-defs in A that are
reachable from AValNo.
llvm-svn: 139782
The source live range is recomputed using shrinkToUses() which does
handle phis correctly. The hasPHIKill() condition was relevant in the
old days when ReMaterializeTrivialDef() tried to recompute the live
range itself.
The shrinkToUses() function will mark the original def as dead when no
more uses and phi kills remain. It is then removed by
runOnMachineFunction().
llvm-svn: 139781
It is conservatively correct to keep the hasPHIKill flags, even after
deleting PHI-defs.
The calculation can be very expensive after taildup has created a
quadratic number of indirectbr edges in the CFG, and the hasPHIKill flag
isn't used for anything after RenumberValues().
llvm-svn: 139780
THe LRE_DidCloneVirtReg callback may be called with vitual registers
that RAGreedy doesn't even know about yet. In that case, there are no
data structures to update.
llvm-svn: 139702
When a back-copy is hoisted to the nearest common dominator, keep
looking up the dominator tree for a less loopy dominator, and place the
back-copy there instead.
Don't do this when a single existing back-copy dominates all the others.
Assume the client knows what he is doing, and keep the dominating
back-copy.
This prevents us from hoisting back-copies into loops in most cases. If
a value is defined in a loop with multiple exits, we may still hoist
back-copies into that loop. That is the speed/size tradeoff.
llvm-svn: 139698
When a ParentVNI maps to multiple defs in a new interval, its live range
may still be derived directly from RegAssign by transferValues().
On the other hand, when instructions have been rematerialized or
hoisted, it may be necessary to completely recompute live ranges using
LiveRangeCalc::extend() to all uses.
Use a bit in the value map to indicate that a live range must be
recomputed. Rename markComplexMapped() to forceRecompute().
This fixes some live range verification errors when
-split-spill-mode=size hoists back-copies by recomputing source ranges
when RegAssign kills can't be moved.
llvm-svn: 139660
Whenever the complement interval is defined by multiple copies of the
same value, hoist those back-copies to the nearest common dominator.
This ensures that at most one copy is inserted per value in the
complement inteval, and no phi-defs are needed.
llvm-svn: 139651