We were discussing on discord regarding the need for extension-based systems like Python to dynamically link against MLIR (or else you can only have one extension that depends on it). Currently, when I set that up, I piggy-backed off of the flag that enables build libLLVM.so and libMLIR.so and depended on libMLIR.so from the python extension if shared library building was enabled. However, this is less than ideal.
In the current setup, libMLIR.so exports both all symbols from the C++ API and the C-API. The former is a kitchen sink and the latter is curated. We should be splitting them and for things that are properly factored to depend on the C-API, they should have the option to *only* depend on the C-API, and we should build that shared library no matter what. Its presence isn't just an optimization: it is a key part of the system.
To do this right, I needed to:
* Introduce visibility macros into mlir-c/Support.h. These should work on both *nix and windows as-is.
* Create a new libMLIRPublicAPI.so with just the mlir-c object files.
* Compile the C-API with -fvisibility=hidden.
* Conditionally depend on the libMLIR.so from libMLIRPublicAPI.so if building libMLIR.so (otherwise, also links against the static libs and will produce a mondo libMLIRPublicAPI.so).
* Disable re-exporting of static library symbols that come in as transitive deps.
This gives us a dynamic linked C-API layer that is minimal and should work as-is on all platforms. Since we don't support libMLIR.so building on Windows yet (and it is not very DLL friendly), this will fall back to a mondo build of libMLIRPublicAPI.so, which has its uses (it is also the most size conscious way to go if you happen to know exactly what you need).
Sizes (release/stripped, Ubuntu 20.04):
Shared library build:
libMLIRPublicAPI.so: 121Kb
_mlir.cpython-38-x86_64-linux-gnu.so: 1.4Mb
mlir-capi-ir-test: 135Kb
libMLIR.so: 21Mb
Static build:
libMLIRPublicAPI.so: 5.5Mb (since this is a "static" build, this includes the MLIR implementation as non-exported code).
_mlir.cpython-38-x86_64-linux-gnu.so: 1.4Mb
mlir-capi-ir-test: 44Kb
Things like npcomp and circt which bring their own dialects/transforms/etc would still need the shared library build and code that links against libMLIR.so (since it is all C++ interop stuff), but hopefully things that only depend on the public C-API can just have the one narrow dep.
I spot checked everything with nm, and it looks good in terms of what is exporting/importing from each layer.
I'm not in a hurry to land this, but if it is controversial, I'll probably split off the Support.h and API visibility macro changes, since we should set that pattern regardless.
Reviewed By: mehdi_amini, benvanik
Differential Revision: https://reviews.llvm.org/D90824
This is exposing the basic functionalities (create, nest, addPass, run) of
the PassManager through the C API in the new header: `include/mlir-c/Pass.h`.
In order to exercise it in the unit-test, a basic TableGen backend is
also provided to generate a simple C wrapper around the pass
constructor. It is used to expose the libTransforms passes to the C API.
Reviewed By: stellaraccident, ftynse
Differential Revision: https://reviews.llvm.org/D90667
When compiling for code size, the use of a vtable causes a destructor(and constructor in certain cases) to be generated for the class. Interface models don't need a complex constructor or a destructor, so this can lead to many megabytes of code size increase(even in opt). This revision switches to a simpler struct of function pointers approach that accomplishes the same API requirements as before. This change requires no updates to user code, or any other code aside from the generator, as the user facing API is still exactly the same.
Differential Revision: https://reviews.llvm.org/D90085
A recent commit introduced a new syntax for specifying builder arguments in
ODS, which is better amenable to automated processing, and deprecated the old
form. Transition all dialects as well as Linalg ODS generator to use the new
syntax.
Add a deprecation notice to ODS generator.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D90038
Historically, custom builder specification in OpBuilder has been accepting the
formal parameter list for the builder method as a raw string containing C++.
While this worked well to connect the signature and the body, this became
problematic when ODS needs to manipulate the parameter list, e.g. to inject
OpBuilder or to trim default values when generating the definition. This has
also become inconsistent with other method declarations, in particular in
interface definitions.
Introduce the possibility to define OpBuilder formal parameters using a
TableGen dag similarly to other methods. Additionally, introduce a mechanism to
declare parameters with default values using an additional class. This
mechanism can be reused in other methods. The string-based builder signature
declaration is deprecated and will be removed after a transition period.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D89470
Have the ODS TypeDef generator write the getChecked() definition.
Also add to TypeParamCommaFormatter a `JustParams` format and
refactor around that.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D89438
Added an underlying matcher for generic constant ops. This
included a rewriter of RewriterGen to make variable use more
clear.
Differential Revision: https://reviews.llvm.org/D89161
This CL allows user to specify the same name for the operands in the source pattern which implicitly enforces equality on operands with the same name.
E.g., Pat<(OpA $a, $b, $a) ... > would create a matching rule for checking equality for the first and the last operands. Equality of the operands is enforced at any depth, e.g., OpA ($a, $b, OpB($a, $c, OpC ($a))).
Example usage: Pat<(Reshape $arg0, (Shape $arg0)), (replaceWithValue $arg0)>
Note, this feature only covers operands but not attributes.
Current use cases are based on the operand equality and explicitly add the constraint into the pattern. Attribute equality will be worked out on the different CL.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D89254
This reverts commit 7271c1bcb9.
This broke the gcc-5 build:
/usr/include/c++/5/ext/new_allocator.h:120:4: error: no matching function for call to 'std::pair<const std::__cxx11::basic_string<char>, mlir::tblgen::SymbolInfoMap::SymbolInfo>::pair(llvm::StringRef&, mlir::tblgen::SymbolInfoMap::SymbolInfo)'
{ ::new((void *)__p) _Up(std::forward<_Args>(__args)...); }
^
In file included from /usr/include/c++/5/utility:70:0,
from llvm/include/llvm/Support/type_traits.h:18,
from llvm/include/llvm/Support/Casting.h:18,
from mlir/include/mlir/Support/LLVM.h:24,
from mlir/include/mlir/TableGen/Pattern.h:17,
from mlir/lib/TableGen/Pattern.cpp:14:
/usr/include/c++/5/bits/stl_pair.h:206:9: note: candidate: template<class ... _Args1, long unsigned int ..._Indexes1, class ... _Args2, long unsigned int ..._Indexes2> std::pair<_T1, _T2>::pair(std::tuple<_Args1 ...>&, std::tuple<_Args2 ...>&, std::_Index_tuple<_Indexes1 ...>, std::_Index_tuple<_Indexes2 ...>)
pair(tuple<_Args1...>&, tuple<_Args2...>&,
^
Adds a TypeDef class to OpBase and backing generation code. Allows one
to define the Type, its parameters, and printer/parser methods in ODS.
Can generate the Type C++ class, accessors, storage class, per-parameter
custom allocators (for the storage constructor), and documentation.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D86904
This CL allows user to specify the same name for the operands in the source pattern which implicitly enforces equality on operands with the same name.
E.g., Pat<(OpA $a, $b, $a) ... > would create a matching rule for checking equality for the first and the last operands. Equality of the operands is enforced at any depth, e.g., OpA ($a, $b, OpB($a, $c, OpC ($a))).
Example usage: Pat<(Reshape $arg0, (Shape $arg0)), (replaceWithValue $arg0)>
Note, this feature only covers operands but not attributes.
Current use cases are based on the operand equality and explicitly add the constraint into the pattern. Attribute equality will be worked out on the different CL.
Differential Revision: https://reviews.llvm.org/D89254
This revision introduces support for buffer allocation for any named linalg op.
To avoid template instantiating many ops, a new ConversionPattern is created to capture the LinalgOp interface.
Some APIs are updated to remain consistent with MLIR style:
`OwningRewritePatternList * -> OwningRewritePatternList &`
`BufferAssignmentTypeConverter * -> BufferAssignmentTypeConverter &`
Differential revision: https://reviews.llvm.org/D89226
mlir-tblgen was incompatible with libLLVM, due to explicit linkage with
libLLVMSupport etc.
As it cannot link with libLLVM, make sure all lib it uses are not using libLLVM
either.
As a side effect, also remove some explicit references to LLVM libs and use
components instead.
Differential Revision: https://reviews.llvm.org/D88846
This change replaces container used for storing temporary
strings for generated code to std::list.
SmallVector may reallocate internal data, which will invalidate
references when more than one extended instruction set is
generated.
Reviewed By: mravishankar, antiagainst
Differential Revision: https://reviews.llvm.org/D88626
Class simplifies keeping track of the indentation while emitting. For every new line the current indentation is simply prefixed (if not at start of line, then it just emits as normal). Add a simple Region helper that makes it easy to have the C++ scope match the emitted scope.
Use this in op doc generator and rewrite generator.
This reverts revert commit be185b6a73 addresses shared lib failure by fixing up cmake files.
Differential Revision: https://reviews.llvm.org/D84107
Class simplifies keeping track of the indentation while emitting. For every new line the current indentation is simply prefixed (if not at start of line, then it just emits as normal). Add a simple Region helper that makes it easy to have the C++ scope match the emitted scope.
Use this in op doc generator and rewrite generator.
Differential Revision: https://reviews.llvm.org/D84107
This tweaks the generated code for parsing attributes with a custom
directive to call `addAttribute` on the `OperationState` directly,
and adds a newline after this call. Previously, the generated code
would call `addAttribute` on the `OperationState` field `attributes`,
which has no such method and fails to compile. Furthermore, the lack
of newline would generate code with incorrectly formatted single line
`if` statements. Added tests for parsing and printing attributes with
a custom directive.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D87860
- Change the default builders to use TypeRange instead of ArrayRef<Type>
- Custom builders defined in LinalgStructuredOps now conflict with the default
separate param ones, but the default collective params one is still needed. Resolve
this by replicating the collective param builder as a custom builder and skipping
the generation of default builders for these ops.
Differential Revision: https://reviews.llvm.org/D87926
The OpBuilder is required to start with OpBuilder and OperationState, so remove
the need for the user to specify it. To make it simpler to update callers,
retain the legacy behavior for now and skip injecting OpBuilder/OperationState
when params start with OpBuilder.
Related to bug 47442.
Differential Revision: https://reviews.llvm.org/D88050
This revision allows representing a reduction at the level of linalg on tensors for named ops. When a structured op has a reduction and returns tensor(s), new conventions are added and documented.
As an illustration, the syntax for a `linalg.matmul` writing into a buffer is:
```
linalg.matmul ins(%a, %b : memref<?x?xf32>, tensor<?x?xf32>)
outs(%c : memref<?x?xf32>)
```
, whereas the syntax for a `linalg.matmul` returning a new tensor is:
```
%d = linalg.matmul ins(%a, %b : tensor<?x?xf32>, memref<?x?xf32>)
init(%c : memref<?x?xf32>)
-> tensor<?x?xf32>
```
Other parts of linalg will be extended accordingly to allow mixed buffer/tensor semantics in the presence of reductions.
- Change OpClass new method addition to find and eliminate any existing methods that
are made redundant by the newly added method, as well as detect if the newly added
method will be redundant and return nullptr in that case.
- To facilitate that, add the notion of resolved and unresolved parameters, where resolved
parameters have each parameter type known, so that redundancy checks on methods
with same name but different parameter types can be done.
- Eliminate existing code to avoid adding conflicting/redundant build methods and rely
on this new mechanism to eliminate conflicting build methods.
Fixes https://bugs.llvm.org/show_bug.cgi?id=47095
Differential Revision: https://reviews.llvm.org/D87059
Now backends spell out which namespace they want to be in, instead of relying on
clients #including them inside already-opened namespaces. This also means that
cppNamespaces should be fully qualified, and there's no implicit "::mlir::"
prepended to them anymore.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D86811
Its handling is similar to optional attributes, except for the
getter method.
Reviewed By: rsuderman
Differential Revision: https://reviews.llvm.org/D87055
This adds some initial support for regions and does not support formatting the specific arguments of a region. For now this can be achieved by using a custom directive that formats the arguments and then parses the region.
Differential Revision: https://reviews.llvm.org/D86760
Symbol names are a special form of StringAttr that get treated specially in certain areas, such as formatting. This revision adds a special derived attr for them in ODS and adds support in the assemblyFormat for formatting them properly.
Differential Revision: https://reviews.llvm.org/D86759
This revision adds support for custom directives to the declarative assembly format. This allows for users to use C++ for printing and parsing subsections of an otherwise declaratively specified format. The custom directive is structured as follows:
```
custom-directive ::= `custom` `<` UserDirective `>` `(` Params `)`
```
`user-directive` is used as a suffix when this directive is used during printing and parsing. When parsing, `parseUserDirective` will be invoked. When printing, `printUserDirective` will be invoked. The first parameter to these methods must be a reference to either the OpAsmParser, or OpAsmPrinter. The type of rest of the parameters is dependent on the `Params` specified in the assembly format.
Differential Revision: https://reviews.llvm.org/D84719
The PDL Interpreter dialect provides a lower level abstraction compared to the PDL dialect, and is targeted towards low level optimization and interpreter code generation. The dialect operations encapsulates low-level pattern match and rewrite "primitives", such as navigating the IR (Operation::getOperand), creating new operations (OpBuilder::create), etc. Many of the operations within this dialect also fuse branching control flow with some form of a predicate comparison operation. This type of fusion reduces the amount of work that an interpreter must do when executing.
An example of this representation is shown below:
```mlir
// The following high level PDL pattern:
pdl.pattern : benefit(1) {
%resultType = pdl.type
%inputOperand = pdl.input
%root, %results = pdl.operation "foo.op"(%inputOperand) -> %resultType
pdl.rewrite %root {
pdl.replace %root with (%inputOperand)
}
}
// May be represented in the interpreter dialect as follows:
module {
func @matcher(%arg0: !pdl.operation) {
pdl_interp.check_operation_name of %arg0 is "foo.op" -> ^bb2, ^bb1
^bb1:
pdl_interp.return
^bb2:
pdl_interp.check_operand_count of %arg0 is 1 -> ^bb3, ^bb1
^bb3:
pdl_interp.check_result_count of %arg0 is 1 -> ^bb4, ^bb1
^bb4:
%0 = pdl_interp.get_operand 0 of %arg0
pdl_interp.is_not_null %0 : !pdl.value -> ^bb5, ^bb1
^bb5:
%1 = pdl_interp.get_result 0 of %arg0
pdl_interp.is_not_null %1 : !pdl.value -> ^bb6, ^bb1
^bb6:
pdl_interp.record_match @rewriters::@rewriter(%0, %arg0 : !pdl.value, !pdl.operation) : benefit(1), loc([%arg0]), root("foo.op") -> ^bb1
}
module @rewriters {
func @rewriter(%arg0: !pdl.value, %arg1: !pdl.operation) {
pdl_interp.replace %arg1 with(%arg0)
pdl_interp.return
}
}
}
```
Differential Revision: https://reviews.llvm.org/D84579
PDL presents a high level abstraction for the rewrite pattern infrastructure available in MLIR. This abstraction allows for representing patterns transforming MLIR, as MLIR. This allows for applying all of the benefits that the general MLIR infrastructure provides, to the infrastructure itself. This means that pattern matching can be more easily verified for correctness, targeted by frontends, and optimized.
PDL abstracts over various different aspects of patterns and core MLIR data structures. Patterns are specified via a `pdl.pattern` operation. These operations contain a region body for the "matcher" code, and terminate with a `pdl.rewrite` that either dispatches to an external rewriter or contains a region for the rewrite specified via `pdl`. The types of values in `pdl` are handle types to MLIR C++ types, with `!pdl.attribute`, `!pdl.operation`, and `!pdl.type` directly mapping to `mlir::Attribute`, `mlir::Operation*`, and `mlir::Value` respectively.
An example pattern is shown below:
```mlir
// pdl.pattern contains metadata similarly to a `RewritePattern`.
pdl.pattern : benefit(1) {
// External input operand values are specified via `pdl.input` operations.
// Result types are constrainted via `pdl.type` operations.
%resultType = pdl.type
%inputOperand = pdl.input
%root, %results = pdl.operation "foo.op"(%inputOperand) -> %resultType
pdl.rewrite(%root) {
pdl.replace %root with (%inputOperand)
}
}
```
This is a culmination of the work originally discussed here: https://groups.google.com/a/tensorflow.org/g/mlir/c/j_bn74ByxlQ
Differential Revision: https://reviews.llvm.org/D84578
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622
This changes the behavior of constructing MLIRContext to no longer load globally
registered dialects on construction. Instead Dialects are only loaded explicitly
on demand:
- the Parser is lazily loading Dialects in the context as it encounters them
during parsing. This is the only purpose for registering dialects and not load
them in the context.
- Passes are expected to declare the dialects they will create entity from
(Operations, Attributes, or Types), and the PassManager is loading Dialects into
the Context when starting a pipeline.
This changes simplifies the configuration of the registration: a compiler only
need to load the dialect for the IR it will emit, and the optimizer is
self-contained and load the required Dialects. For example in the Toy tutorial,
the compiler only needs to load the Toy dialect in the Context, all the others
(linalg, affine, std, LLVM, ...) are automatically loaded depending on the
optimization pipeline enabled.
To adjust to this change, stop using the existing dialect registration: the
global registry will be removed soon.
1) For passes, you need to override the method:
virtual void getDependentDialects(DialectRegistry ®istry) const {}
and registery on the provided registry any dialect that this pass can produce.
Passes defined in TableGen can provide this list in the dependentDialects list
field.
2) For dialects, on construction you can register dependent dialects using the
provided MLIRContext: `context.getOrLoadDialect<DialectName>()`
This is useful if a dialect may canonicalize or have interfaces involving
another dialect.
3) For loading IR, dialect that can be in the input file must be explicitly
registered with the context. `MlirOptMain()` is taking an explicit registry for
this purpose. See how the standalone-opt.cpp example is setup:
mlir::DialectRegistry registry;
registry.insert<mlir::standalone::StandaloneDialect>();
registry.insert<mlir::StandardOpsDialect>();
Only operations from these two dialects can be in the input file. To include all
of the dialects in MLIR Core, you can populate the registry this way:
mlir::registerAllDialects(registry);
4) For `mlir-translate` callback, as well as frontend, Dialects can be loaded in
the context before emitting the IR: context.getOrLoadDialect<ToyDialect>()
Differential Revision: https://reviews.llvm.org/D85622