This patch fixes LLDB API tests MakeFile.rules to allow overriding of
debug symbol flags when compiling tests for Windows.
Previously windows tests were forced to emit only dwarf debug symbols
as majority of the tests rely on dwarf debug info. After this patch
any test can override debug symbol flag by setting DEBUG_INFO_FLAG
variable in its make file.
Replace the use of "trap" with a new "stop" command in fork tests,
that maps to `raise(SIGSTOP)`. Since traps do not increment PC on some
architectures (notably ARM), using traps would require special logic
to increment it while testing. Using SIGSTOP avoids the problem
and is probably more logical, given that the purpose of the "trap"s
was to simply stop the inferior at a synchronization point. This fixes
tests on AArch64 (and possibly ARM, I'll update XFAILs when it is
confirmed by the buildbot).
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.llvm.org/D128780
Split the test that's gotten very long in two, in hope that it will
resolve the arm/aarch64 buildbot failures. Even if it does not, it
could help pinpointing where the problem lies.
Sponsored by: The FreeBSD Foundation
Update the `qfThreadInfo` handler to report threads of all debugged
processes and include PIDs when in multiprocess mode.
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.llvm.org/D128152
Implement the support for %Stop asynchronous notification packet format
in LLGS. This does not implement full support for non-stop mode for
threaded programs -- process plugins continue stopping all threads
on every event. However, it will be used to implement asynchronous
events in multiprocess debugging.
The non-stop protocol is enabled using QNonStop packet. When it is
enabled, the server uses notification protocol instead of regular stop
replies. Since all threads are always stopped, notifications are always
generated for all active threads and copied into stop notification
queue.
If the queue was empty, the initial asynchronous %Stop notification
is sent to the client immediately. The client needs to (eventually)
acknowledge the notification by sending the vStopped packet, in which
case it is popped from the queue and the stop reason for the next thread
is reported. This continues until notification queue is empty again,
in which case an OK reply is sent.
Asychronous notifications are also used for vAttach results and program
exits. The `?` packet uses a hybrid approach -- it returns the first
stop reason synchronously, and exposes the stop reasons for remaining
threads via vStopped queue.
The change includes a test case for a program generating a segfault
on 3 threads. The server is expected to generate a stop notification
for the segfaulting thread, along with the notifications for the other
running threads (with "no stop reason"). This verifies that the stop
reasons are correctly reported for all threads, and that notification
queue works.
Sponsored by: The FreeBSD Foundation
Differential Revision: https://reviews.llvm.org/D125575
This patch implements VSCode DAP logpoints feature (also called tracepoint
in other VS debugger).
This will provide a convenient way for user to do printf style logging
debugging without pausing debuggee.
Differential Revision: https://reviews.llvm.org/D127702
Add trace load functionality to SBDebugger via the `LoadTraceFromFile` method.
Update intelpt test case class to have `testTraceLoad` method so we can take advantage of
the testApiAndSB decorator to test both the CLI and SB without duplicating code.
Differential Revision: https://reviews.llvm.org/D128107
Eliminate boilerplate of having each test manually assign to `mydir` by calling
`compute_mydir` in lldbtest.py.
Differential Revision: https://reviews.llvm.org/D128077
As discusses offline with @jj10305, we are updating some naming used throughout the code, specially in the json schema
- traceBuffer -> iptTrace
- core -> cpu
Differential Revision: https://reviews.llvm.org/D127817
Add a function to make it easier to debug a test failure caused by an
unexpected state.
Currently, tests are using assertEqual which results in a cryptic error
message: "AssertionError: 5 != 10". Even when a test provides a message
to make it clear why a particular state is expected, you still have to
figure out which of the two was the expected state, and what the other
value corresponds to.
We have a function in lldbutil that helps you convert the state number
into a user readable string. This patch adds a wrapper around
assertEqual specifically for comparing states and reporting better error
messages.
The aforementioned error message now looks like this: "AssertionError:
stopped (5) != exited (10)". If the user provided a message, that
continues to get printed as well.
Differential revision: https://reviews.llvm.org/D127355
In order to avoid stranding the Objective-C runtime lock, we switched
from objc_copyRealizedClassList to its non locking variant
objc_copyRealizedClassList_nolock. Not taking the lock was relatively
safe because we run this expression on one thread only, but it was still
possible that someone was in the middle of modifying this list while we
were trying to read it. Worst case that would result in a crash in the
inferior without side-effects and we'd unwind and try again later.
With the introduction of macOS Ventura, we can use
objc_getRealizedClassList_trylock instead. It has semantics similar to
objc_copyRealizedClassList_nolock, but instead of not locking at all,
the function returns if the lock is already taken, which avoids the
aforementioned crash without stranding the Objective-C runtime lock.
Because LLDB gets to allocate the underlying memory we also avoid
stranding the malloc lock.
rdar://89373233
Differential revision: https://reviews.llvm.org/D127252
This patch adds a minor fix in lldbtest.py TestBase.generateSource
function. Generated Python source with directory paths was not being
escaped properly. This fix makes sure we treat dir path as raw string.
This patch removes use of -fno-builtin flag for building LLDB API
tests.
LLDB API tests are built using Makefile.rules where we were using
-fno-builtin flag to avoid gcc intrinsic optimization conflicting
with Android runtime in past.
Now that we no longer use gcc for building testsuite and compiling
LLDB API tests on AArch64/Windows require clang to optimize certain
calls like _setjmp to setjmpex as former is not implemented by
AArch64 windows runtime.
so that they can be used to prime new Process runs. "process handle"
was also changed to populate the dummy target if there's no selected
target, so that the settings will get copied into new targets.
Differential Revision: https://reviews.llvm.org/D126259
This patch should fix a bug in PExpect.launch that happened when color
support is not enabled.
In that case, we need to add the `--no-use-colors` flag to lldb's launch
argument list. However, previously, each character to the string was
appended separately to the `args` list. This patch solves that by adding
the whole string to the list.
This should fix the TestIOHandlerResize failure on GreenDragon.
Differential Revision: https://reviews.llvm.org/D126021
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This should fix the issues introduced by d71d1a9, which skipped all the
test setup commands.
This also fixes the test failures happening in TestAutosuggestion.py.
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This patch adds a new `use_colors` argument to the PExpect.launch
method.
As the name suggests, it allows the user to conditionally enable color
support in the debugger, which can be helpful to test functionalities that
rely on that, like progress reporting. It defaults to False.
Differential Revision: https://reviews.llvm.org/D125915
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
This diffs implements per-core tracing on lldb-server. It also includes tests that ensure that tracing can be initiated from the client and that the jLLDBGetState ppacket returns the list of trace buffers per core.
This doesn't include any decoder changes.
Finally, this makes some little changes here and there improving the existing code.
A specific piece of code that can't reliably be tested is when tracing
per core fails due to permissions. In this case we add a
troubleshooting message and this is the manual test:
```
/proc/sys/kernel/perf_event_paranoid set to 1
(lldb) process trace start --per-core-tracing error: perf event syscall failed: Permission denied
You might need that /proc/sys/kernel/perf_event_paranoid has a value of 0 or -1.
``
Differential Revision: https://reviews.llvm.org/D124858
This updates the documentation of the gdb-remote protocol, as well as the help messages, to include the new --per-core-tracing option.
Differential Revision: https://reviews.llvm.org/D124640
distutils is deprecated and shutil.which is the suggested
replacement for this function.
https://peps.python.org/pep-0632/#migration-advicehttps://docs.python.org/3/library/shutil.html#shutil.which
It was added in Python3.3 but given that we're already using
shutil.which elsewhere I think this is ok/no worse than before.
We do have our own find_executable in lldb/test/Shell/helper/build.py
but I'd rather leave that as is for now. Also we have our own versions
of which() but again, a change for another time.
This work is part of #54337.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D124601
This changes the decorator helper `_match_decorator_property` to
consider `None` as the actual value as not a match. Using `None` for the
pattern continues to be considered a match.
I discovered the issue because marking a test as NO_DEBUG_INFO_TESTCASE
will cause the call to `self.getDebugInfo()` to return `None` and
incorrectly skip or XFAIL the corresponding test.
I used the above scenario to create a test for the decorators.
Differential revision: https://reviews.llvm.org/D123401
This patch moves the platform creation and selection logic into the
per-debugger platform lists. I've tried to keep functional changes to a
minimum -- the main (only) observable difference in this change is that
APIs, which select a platform by name (e.g.,
Debugger::SetCurrentPlatform) will not automatically pick up a platform
associated with another debugger (or no debugger at all).
I've also added several tests for this functionality -- one of the
pleasant consequences of the debugger isolation is that it is now
possible to test the platform selection and creation logic.
This is a product of the discussion at
<https://discourse.llvm.org/t/multiple-platforms-with-the-same-name/59594>.
Differential Revision: https://reviews.llvm.org/D120810
As noticed in D87637, when LLDB crashes, we only print stack traces if
LLDB is directly executed, not when used via Python bindings. Enabling
this by default may be undesirable (libraries shouldn't be messing with
signal handlers), so make this an explicit opt-in.
I "commandeered" this patch from Jordan Rupprecht who put this up for
review originally.
Differential revision: https://reviews.llvm.org/D91835
When opening core files (and also in some other situations) we could end
up with two vdso modules. This could happen because the vdso module is
very special, and over the years, we have accumulated various ways to
load it.
In D10800, we added one mechanism for loading it, which took the form of
a generic load-from-memory capability. Unfortunately loading an elf file
from memory is not possible (because the loader never loads the entire
file), and our attempts to do so were causing crashes. So, in D34352, we
partially reverted D10800 and implemented a custom mechanism specific to
the vdso.
Unfortunately, enough of D10800 remained such that, under the right
circumstances, it could end up loading a second (non-functional) copy of
the vdso module. This happened when the process plugin did not support
the extended MemoryRegionInfo query (added in D22219, to workaround a
different bug), which meant that the loader plugin was not able to
recognise that the linux-vdso.so.1 module (this is how the loader calls
it) is in fact the same as the [vdso] module (the name used in
/proc/$PID/maps) we loaded before. This typically happened in a core
file, as they don't store this kind of information.
This patch fixes the issue by completing the revert of D10800 -- the
memory loading code is removed completely. It also reduces the scope of
the hackaround introduced in D22219 -- it isn't completely sound and is
only relevant for fairly old (but still supported) versions of android.
I added the memory loading logic to the wasm dynamic loader, which has
since appeared and is relying on this feature (it even has a test). As
far as I can tell loading wasm modules from memory is possible and
reliable. MachO memory loading is not affected by this patch, as it uses
a completely different code path.
Since the scenarios/patches I described came without test cases, I have
created two new gdb-client tests cases for them. They're not
particularly readable, but right now, this is the best way we can
simulate the behavior (bugs) of a particular dynamic linker.
Differential Revision: https://reviews.llvm.org/D122660
This recommits dddf4ce03, which was reverted because of a couple of test
failures on macos. The reason behind the failures was that the patch
inadvertenly changed the value returned by the host platform from
"macosx" to "darwin". The new version fixes that.
Original commit message was:
The decision which categories are relevant for a particular test run
happen very early in the test setup process. They use the SBPlatform
object to determine which categories should be skipped. The platform
object created for this purpose transcends individual test runs.
This setup is not compatible with the direction discussed in
<https://discourse.llvm.org/t/multiple-platforms-with-the-same-name/59594>
-- when platform objects are tied to a specific (SB)Debugger, they need
to be created alongside it, which currently happens in the test setUp
method.
This patch is the first step in that direction -- it rewrites the
category skipping logic to avoid depending on a global SBPlatform
object. Fortunately, the skipping logic is fairly simple (and I believe
it outght to stay that way) and mainly consists of comparing the
platform name against some hardcoded lists. This patch bases this
comparison on the platform name instead of the os part of the triple (as
reported by the platform).
Differential Revision: https://reviews.llvm.org/D121605
This patch introduces 2 new lldb utility functions:
- lldbutil.start_listening_from: This can be called in the test setup to
create a listener and set it up for a specific event mask and add it
to the user-provided broadcaster's list.
- lldbutil.fetch_next_event: This will use fetch a single event from the
provided istener and return it if it matches the provided broadcaster.
The motivation behind this is to easily test new kinds of events
(i.e. Swift type-system progress events). However, this patch also
updates `TestProgressReporting.py` and `TestDiagnosticReporting.py`
to make use of these new helper functions.
Differential Revision: https://reviews.llvm.org/D122193
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
By default these timeouts are extremely small (0.1s). This means that
100ms after sending an EOF, pexpect will start sending the process
increasingly aggressive signals, but the small timeouts mean that (on a
loaded machine) the kernel may not have enough time to process the
signal even if the overall effect of the signal is to kill the
application.
It turns out we were already relying on this signals (instead of regular
EOF quits) in our tests. In my experiments it was sufficient to block
SIGINT and SIGHUP to cause some test to become flaky. This was most
likely the reason of a couple of flakes on the lldb-x86_64-debian bot,
and is probably the reason why the pexpect tests are flaky on several
other (e.g. asan) bots.
This patch increses the timeout to 6 seconds (60-fold increase), which
is hopefully sufficient to avoid flakes even in the most extreme
situations.
This patch introduces a generic helper class that will listen for
event in a background thread and match it against a source broadcaster.
If the event received matches the source broadcaster, the event is
queued up in a list that the user can access later on.
The motivation behind this is to easily test new kinds of events
(i.e. Swift type-system progress events). However, this patch also
updates `TestProgressReporting.py` and `TestDiagnosticReporting.py`
to make use of this new helper class.
Differential Revision: https://reviews.llvm.org/D121977
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
The decision which categories are relevant for a particular test run
happen very early in the test setup process. They use the SBPlatform
object to determine which categories should be skipped. The platform
object created for this purpose transcends individual test runs.
This setup is not compatible with the direction discussed in
<https://discourse.llvm.org/t/multiple-platforms-with-the-same-name/59594>
-- when platform objects are tied to a specific (SB)Debugger, they need
to be created alongside it, which currently happens in the test setUp
method.
This patch is the first step in that direction -- it rewrites the
category skipping logic to avoid depending on a global SBPlatform
object. Fortunately, the skipping logic is fairly simple (and I believe
it outght to stay that way) and mainly consists of comparing the
platform name against some hardcoded lists. This patch bases this
comparison on the platform name instead of the os part of the triple (as
reported by the platform).
Differential Revision: https://reviews.llvm.org/D121605
Add `IsAggregateType` to the SB API.
I'd like to use this from tests, and there are numerous other `Is<X>Type`
predicates on `SBType`.
Differential Revision: https://reviews.llvm.org/D121252
Our SIGTSTP handler was working, but that was mostly accidental.
The reason it worked is because lldb is multithreaded for most of its
lifetime and the OS is reasonably fast at responding to signals. So,
what happened was that the kill(SIGTSTP) which we sent from inside the
handler was delivered to another thread while the handler was still set
to SIG_DFL (which then correctly put the entire process to sleep).
Sometimes it happened that the other thread got the second signal after
the first thread had already restored the handler, in which case the
signal handler would run again, and it would again attempt to send the
SIGTSTP signal back to itself.
Normally it didn't take many iterations for the signal to be delivered
quickly enough. However, if you were unlucky (or were playing around
with pexpect) you could get SIGTSTP while lldb was single-threaded, and
in that case, lldb would go into an endless loop because the second
SIGTSTP could only be handled on the main thread, and only after the
handler for the first signal returned (and re-installed itself). In that
situation the handler would keep re-sending the signal to itself.
This patch fixes the issue by implementing the handler the way it
supposed to be done:
- before sending the second SIGTSTP, we unblock the signal (it gets
automatically blocked upon entering the handler)
- we use raise to send the signal, which makes sure it gets delivered to
the thread which is running the handler
This also means we don't need the SIGCONT handler, as our TSTP handler
resumes right after the entire process is continued, and we can do the
required work there.
I also include a test case for the SIGTSTP flow. It uses pexpect, but it
includes a couple of extra twists. Specifically, I needed to create an
extra process on top of lldb, which will run lldb in a separate process
group and simulate the role of the shell. This is needed because SIGTSTP
is not effective on a session leader (the signal gets delivered, but it
does not cause a stop) -- normally there isn't anyone to notice the
stop.
Differential Revision: https://reviews.llvm.org/D120320
The race is between these two pieces of code that are executed in two separate
lldb-vscode threads (the first is in the main thread and another is in the
event-handling thread):
```
// lldb-vscode.cpp
g_vsc.debugger.SetAsync(false);
g_vsc.target.Launch(launch_info, error);
g_vsc.debugger.SetAsync(true);
```
```
// Target.cpp
bool old_async = debugger.GetAsyncExecution();
debugger.SetAsyncExecution(true);
debugger.GetCommandInterpreter().HandleCommands(GetCommands(), exc_ctx,
options, result);
debugger.SetAsyncExecution(old_async);
```
The sequence that leads to the bug is this one:
1. Main thread enables synchronous mode and launches the process.
2. When the process is launched, it generates the first stop event.
3. This stop event is catched by the event-handling thread and DoOnRemoval
is invoked.
4. Inside DoOnRemoval, this thread runs stop hooks. And before running stop
hooks, the current synchronization mode is stored into old_async (and
right now it is equal to "false").
5. The main thread finishes the launch and returns to lldb-vscode, the
synchronization mode is restored to asynchronous by lldb-vscode.
6. Event-handling thread finishes stop hooks processing and restores the
synchronization mode according to old_async (i.e. makes the mode synchronous)
7. And now the mode is synchronous while lldb-vscode expects it to be
asynchronous. Synchronous mode forbids the process to broadcast public stop
events, so, VS Code just hangs because lldb-vscode doesn't notify it about
stops.
So, this diff makes the target intercept the first stop event if the process is
launched in the synchronous mode, thus preventing stop hooks execution.
The bug is only present on Windows because other platforms already
intercept this event using their own hijacking listeners.
So, this diff also fixes some problems with lldb-vscode tests on Windows to make
it possible to run the related test. Other tests still can't be enabled because
the debugged program prints something into stdout and LLDB can't intercept this
output and redirect it to lldb-vscode properly.
Reviewed By: jingham
Differential Revision: https://reviews.llvm.org/D119548
We discovered that when using "launchCommands" or "attachCommands" that there was an issue where these commands were not being run synchronously. There were further problems in this case where we would get thread events for the process that was just launched or attached before the IDE was ready, which is after "configurationDone" was sent to lldb-vscode.
This fix introduces the ability to wait for the process to stop after the run or attach to ensure that we have a stopped process at the entry point that is ready for the debug session to proceed. This also allows us to run the normal launch or attach without needing to play with the async flag the debugger. We spin up the thread that listens for process events before we start the launch or attach, but we stop the first eStateStopped (with stop ID of zero) event from being delivered through the DAP protocol because the "configurationDone" request handler will deliver it manually as the IDE expects a stop after configuration done. The request_configurationDone will also only deliver the stop packet if the "stopOnEntry" is False in the launch configuration.
Also added a new "timeout" to the launch and attach launch configuration arguments that can be set and defaults to 30 seconds. Since we now poll to detect when the process is stopped, we need a timeout that can be changed in case certain workflows take longer that 30 seconds to attach. If the process is not stopped by the timeout, an error will be retured for the launch or attach.
Added a flag to the vscode.py protocol classes that detects and ensures that no "stopped" events are sent prior to "configurationDone" has been sent and will raise an error if it does happen.
This should make our launching and attaching more reliable and avoid some deadlocks that were being seen (https://reviews.llvm.org/D119548).
Differential Revision: https://reviews.llvm.org/D119797
Instead of using sleeps, have the inferior notify us (via a trap opcode) that
the requested number of threads have been created.
This allows us to get rid of some fairly dodgy test utility code --
wait_for_thread_count seemed like it was waiting for the threads to
appear, but it never actually let the inferior run, so it only succeeded
if the threads were already started when the function was called. Since
the function was called after a fairly small delay (1s, usually), this
is probably the reason why the tests were failing on some bots.
Differential Revision: https://reviews.llvm.org/D119167
This fixes TestGdbRemoteSingleStep.py and TestGdbRemote_vCont.py. This
patch updates the test to account for the possibility that the constants
are already materialized. This appears to behave differently between
embedded arm64 devices and Apple Silicon.
Implement the qXfer:siginfo:read that is used to read the siginfo_t
(extended signal information) for the current thread. This is currently
implemented on FreeBSD and Linux.
Differential Revision: https://reviews.llvm.org/D117113