The new behavior matches GNU objdump. A pair of angle brackets makes tests slightly easier.
`.foo:` is not unique and thus cannot be used in a `CHECK-LABEL:` directive.
Without `-LABEL`, the CHECK line can match the `Disassembly of section`
line and causes the next `CHECK-NEXT:` to fail.
```
Disassembly of section .foo:
0000000000001634 .foo:
```
Bdragon: <> has metalinguistic connotation. it just "feels right"
Reviewed By: rupprecht
Differential Revision: https://reviews.llvm.org/D75713
GNU ld creates the synthetic section .iplt, and has a built-in linker
script that assigns .iplt to the output section .plt . There is no
output section named .iplt .
Making .iplt an output section actually has a benefit that makes the
tricky toolchain feature stand out. Symbolizers don't have to deal with
mixed PLT entries (e.g. llvm-objdump -d incorrectly annotates such jump
targets).
On EM_PPC{,64}, .glink contains a PLT resolver and a series of jump
instructions. The 4-byte entry size makes it unnecessary to have an
alignment of 16.
Mark ppc32-gnu-ifunc.s and ppc32-gnu-ifunc-nonpreemptable.s as `XFAIL: *`.
They test IPLT on EM_PPC, which never works.
Reviewed By: peter.smith
Differential Revision: https://reviews.llvm.org/D71520
Ported the D64906 technique to AArch64. It deletes 3 alignments at
PT_LOAD boundaries for the default case: the size of an aarch64 binary
decreases by at most 192kb.
If `sh_addralign(.tdata) < sh_addralign(.tbss)`,
we can potentially make `p_vaddr(PT_TLS)%p_align(PT_TLS) != 0`.
ld.so that are known to have problems if p_vaddr%p_align!=0:
* musl<=1.1.22
* FreeBSD 13.0-CURRENT (and before) rtld-elf arm64
New test aarch64-tls-vaddr-align.s checks that our workaround makes p_vaddr%p_align = 0.
Reviewed By: ruiu
Differential Revision: https://reviews.llvm.org/D64930
llvm-svn: 369344
An R_*_IRELATIVE represents the address of a STT_GNU_IFUNC symbol
(redirected at runtime) which is non-preemptable and is not associated
with a canonical PLT (associated with a symbol with a section index of
SHN_UNDEF but a non-zero st_value).
.rel[a].plt [DT_JMPREL, DT_JMPREL+DT_JMPRELSZ) contains relocations that
can be lazily resolved. R_*_IRELATIVE are always eagerly resolved, so
conceptually they do not belong to .rela.plt. "iplt" is mostly a misnomer.
glibc powerpc and powerpc64 do not resolve R_*_IRELATIVE if they are in .rela.plt.
// a.o - synthesized PLT call stub has an R_*_IRELATIVE
void ifunc(); int main() { ifunc(); }
// b.o
static void real() {}
asm (".type ifunc, %gnu_indirect_function");
void *ifunc() { return ℜ }
The lld-linked executable crashes. ld.bfd places R_*_IRELATIVE in
.rela.dyn and the executable works.
glibc i386, x86_64, and aarch64 have logic
(glibc/sysdeps/*/dl-machine.h:elf_machine_lazy_rel) to eagerly resolve
R_*_IRELATIVE in .rel[a].plt so the lld-linked executable works.
Move R_*_IRELATIVE from .rel[a].plt to .rel[a].dyn to fix the crashes on
glibc powerpc/powerpc64. This also helps simplifying ifunc
implementation in FreeBSD rtld-elf powerpc64.
If --pack-dyn-relocs=android[+relr] is specified, the Android packed
dynamic relocation format is used for .rela.dyn. We cannot name
in.relaIplt ".rela.dyn" because the output section will have mixed
formats. This can be improved in the future.
Reviewed By: pcc
Differential Revision: https://reviews.llvm.org/D65651
llvm-svn: 367745
Delete aarch64-got.s because it is covered by aarch64-tls-iele.s
Merge got-aarch64.s into aarch64-fpic-got.s by adding disassembly to the latter
Create aarch64-gnu-ifunc-nonpreemptable to unify aarch64-gnu-ifunc3.s (position-dependent executable) and aarch64-gnu-ifunc-address-pie.s (PIE)
Rename aarch64-got-reloc.s to aarch64-got-weak-undef.s
Add --no-show-raw-insn to llvm-objdump -d RUN lines
Add -pie test to arch64-tls-iele.s
Delete aarch64-tls-pie.s: it is covered by arch64-tls-iele.s and aarch64-tls-le.s
Rename aarch64-copy2.s to aarch64-nopic-plt.s: "copy2" gives false impression that the test is related to copy relocation
llvm-svn: 362294