Summary:
Require DominatorTree when requiring/preserving LoopInfo in the old pass manager
BreakCriticalEdges tries to keep LoopInfo and DominatorTree updated if they
exist. However, since commit r321653 and r321805, to update LoopInfo we
must have a DominatorTree, or we will hit an assert.
To fix this we now make a couple of passes that only required/preserved
LoopInfo also require DominatorTree.
This solves PR37334.
Reviewers: eli.friedman, efriedma
Reviewed By: efriedma
Subscribers: efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D46829
llvm-svn: 332583
The existing comment said that the functions were available only
on GNU/Linux (and on certain Android versions), but only checked
T.isGNUEnvironment() which also is true on MinGW (for arch-windows-gnu
triplets), which doesn't have such functions.
Existing checks in the initialize function in TargetLibraryInfo.cpp
also use only T.isOSLinux() to check for glibc features.
This fixes use of stdio on MinGW.
Differential Revision: https://reviews.llvm.org/D47002
llvm-svn: 332581
Summary:
The verifier accepts PHI nodes with multiple entries for the
same basic block, as long as the value is the same.
As seen in PR37203, SROA did not handle such PHI nodes properly
when speculating loads over the PHI, since it inserted multiple
loads in the predecessor block and changed the PHI into having
multiple entries for the same basic block, but with different
values.
This patch teaches SROA to reuse the same speculated load for
each PHI duplicate entry in such situations.
Resolves: https://bugs.llvm.org/show_bug.cgi?id=37203
Reviewers: uabelho, chandlerc, hfinkel, bkramer, efriedma
Reviewed By: efriedma
Subscribers: dberlin, efriedma, llvm-commits
Differential Revision: https://reviews.llvm.org/D46426
llvm-svn: 332577
The current integer widening does not support rewriting partial split slices in rewriteIntegerStore (and rewriteIntegerLoad).
This patch adds explicit checks for this case in isIntegerWideningViableForSlice.
Before r322533, splitting is allowed only for the whole-alloca slice and hence the above case is implicitly rejected by another check `if (DL.getTypeStoreSize(ValueTy) > Size)` because whole-alloca slice is larger than the partition.
Differential Revision: https://reviews.llvm.org/D46750
llvm-svn: 332575
These directives are recognised by gas. Support is added through the use of
addAliasForDirective.
Also match RISC-V gcc in preferring .half and .word for 16-bit and 32-bit data
directives.
llvm-svn: 332574
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
llvm-svn: 332550
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
llvm-svn: 332549
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
llvm-svn: 332548
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
llvm-svn: 332547
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
llvm-svn: 332539
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
llvm-svn: 332538
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
llvm-svn: 332537
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
llvm-svn: 332534
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
llvm-svn: 332533
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we correct FP undef folding.
llvm-svn: 332532
This breaks the code which saves and restores LR, so we can't outline
without doing something more complicated for stack adjustment.
Found by inspection; we get lucky in most cases because getMemOpInfo
only handles STRWpost, not any other pre/post-increment forms. But it
hits a couple of artificial testcases in the tree.
Differential Revision: https://reviews.llvm.org/D46920
llvm-svn: 332529
As suggested by Fabian on PR37441, use PSHUFLW to extend shift amount types for use with PSRAD/PSRLD to reduce register pressure.
Some of this ideally would be done by combineTargetShuffle but its tricky to do as most of the shuffles are sharing inputs.
Differential Revision: https://reviews.llvm.org/D46959
llvm-svn: 332524
The getAtom() method wasn't doing what we needed in all cases. We want
the symbols for the function which defines that section. We can compute
this easily enough and we know that we have at most one function in each
section.
Once this lands I will revert rL331412 which is no longer needed.
Fixes PR37409
Differential Revision: https://reviews.llvm.org/D46970
llvm-svn: 332517
The cost computation assumes we do this correctly, but the actual
lowering was wrong.
Differential Revision: https://reviews.llvm.org/D46923
llvm-svn: 332514
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we make those fixes.
llvm-svn: 332501
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we make those fixes.
llvm-svn: 332500
We need to clean up the DAG floating-point undef logic.
This process is similar to how we handled integer undef
logic in D43141.
And as we did there, I'm trying to reduce the patch by
changing tests that would probably become meaningless
once we make those fixes.
llvm-svn: 332499
As i64 types are not legal on 32-bit targets, insert these into a suitable zero vector and use the packed vXi64<->FP conversion instructions instead.
Fixes PR3163.
Differential Revision: https://reviews.llvm.org/D43441
llvm-svn: 332498
In post-commit review for r332416, Paul Robinson pointed out that the
test for -debugify-each is not checking what it needs to.
This commit tightens up the test.
llvm-svn: 332497
For regular SVE vector operands, this patch introduces a more
sensible diagnostic when the vector has a wrong suffix (e.g. z0.s vs z0.b).
For example:
add z0.s, z1.s, z2.b -> invalid element width
^_____^
mismatch
For the vector-with-shift/extend (e.g. z0.s, uxtw #2) this patch takes
a slightly different approach and instead returns a 'invalid operand'
if the element size is not as expected. This is because the diagnostics
are more specificied to suggest using the right shift/extend suffix. This
is a trade-off not to introduce more operand classes and still provide
useful diagnostics for LD1 and PRF instructions.
For example:
ld1w z1.s, p0/z, [x0, z0.s] -> invalid shift/extend specified, expected 'z[0..31].s, (uxtw|sxtw)'
ld1w z1.d, p0/z, [x0, z0.s] -> invalid operand
^________________^
mismatch
For gather prefetches, both 'z0.s' and 'z0.d' would be allowed:
prfw #0, p0, [x0, z0.s] -> invalid shift/extend specified, expected 'z[0..31].s, (uxtw|sxtw) #2'
prfw #0, p0, [x0, z0.d] -> invalid shift/extend specified, expected 'z[0..31].d, (lsl|uxtw|sxtw) #2'
Without this change, the diagnostic would unnecessarily suggest a
different element size:
prfw #0, p0, [x0, z0.s] -> invalid shift/extend specified, expected 'z[0..31].d, (lsl|uxtw|sxtw) #2'
Reviewers: SjoerdMeijer, aemerson, fhahn, samparker, javed.absar
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D46688
llvm-svn: 332483
Keep loads and stores together (target defines how many loads
and stores to gang up), such that it will help in pairing
and vectorization.
Differential Revision https://reviews.llvm.org/D46477
llvm-svn: 332482
The canonicalization was restricted to shuffle masks with
a 1-to-1 mapping to the constant vector, but that disqualifies
the common splat pattern. This is part of solving PR37463:
https://bugs.llvm.org/show_bug.cgi?id=37463
llvm-svn: 332479
Summary:
A recent patch ([[ https://reviews.llvm.org/rL331587 | rL331587 ]]) to Capture Tracking taught it that the `launder_invariant_group` intrinsic captures its argument only by returning it. Unfortunately, BasicAA still considered every call instruction as a possible escape source and hence concluded that the result of a `launder_invariant_group` call cannot alias any local non-escaping value. This led to [[ https://bugs.llvm.org/show_bug.cgi?id=37458 | bug 37458 ]].
This patch updates the relevant check for escape sources in BasicAA.
Reviewers: Prazek, kuhar, rsmith, hfinkel, sanjoy, xbolva00
Reviewed By: hfinkel, xbolva00
Subscribers: JDevlieghere, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D46900
llvm-svn: 332466
Summary: If file stream arg is not captured and source is fopen, we could replace IO calls by unlocked IO ("_unlocked" function variants) to gain better speed,
Reviewers: efriedma, RKSimon, spatel, sanjoy, hfinkel, majnemer, lebedev.ri, rja
Reviewed By: rja
Subscribers: rja, srhines, efriedma, lebedev.ri, llvm-commits
Differential Revision: https://reviews.llvm.org/D45736
llvm-svn: 332452
We currently handle all aggregates by creating one large LLT, and letting the
legalizer deal with splitting them up. However using this approach means that
we can't support big endian code correctly.
This patch changes the way that the IRTranslator deals with aggregate values,
by splitting them up into their constituent element values. To do this, parts
of the translator need to be modified to deal with multiple VRegs for a single
Value.
A new Value to VReg mapper is introduced to help keep compile time under
control, currently there is no measurable impact on CTMark despite the extra
code being generated in some cases.
Patch is based on the original work of Tim Northover.
Differential Revision: https://reviews.llvm.org/D46018
llvm-svn: 332449
Add support for this target hook, covering MIPS, microMIPS and MIPSR6, along
with some tests. Also add missing getOppositeBranchOpc() cases exposed by the
tests.
Reviewers: atanasyan, abeserminji, smaksimovic
Differential Revision: https://reviews.llvm.org/D46794
llvm-svn: 332446
This patch re-introduces the "S" inline assembler constraint. This matches
an absolute symbolic address or a label reference. The primary use case is
asm("adrp %0, %1\n\t"
"add %0, %0, :lo12:%1" : "=r"(addr) : "S"(&var));
I say re-introduces as it seems like "S" was implemented in the original
AArch64 backend, but it looks like it wasn't carried forward to the merged
backend. The original implementation had A and L modifiers that could be
used to print ":lo12:" to the string. It looks like gcc doesn't use these
and :lo12: is expected to be written in the inline assembly string so I've
not implemented A and L. Clang already supports the S modifier.
Fixes PR37180
Differential Revision: https://reviews.llvm.org/D46745
llvm-svn: 332444
Summary:
SelectionDAGLegalize::ExpandNode() inserts an ISD::MUL when lowering a
BR_JT opcode. While many backends optimize this multiply into a shift, e.g.
the MIPS backend currently always lowers this into a sequence of
load-immediate+multiply+mflo in MipsSETargetLowering::lowerMulDiv().
I initially changed the multiply to a shift in the MIPS backend but it
turns out that would not have handled the MIPSR6 case and was a lot more
code than doing it in LegalizeDAG.
I believe performing this simple optimization in LegalizeDAG instead of
each individual backend is the better solution since this also fixes other
backeds such as MSP430 which calls the multiply runtime function
__mspabi_mpyi without this patch.
Reviewers: sdardis, atanasyan, pftbest, asl
Reviewed By: sdardis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D45760
llvm-svn: 332439