Summary:
[expr.cast.static] states:
> 3. A glvalue of type “cv1 T1” can be cast to type “rvalue reference to cv2 T2” if “cv2 T2” is reference-compatible
> with “cv1 T1”. The result refers to the object or the specified base class subobject thereof. If T2 is
> an inaccessible or ambiguous base class of T1, a program that necessitates such a cast is
> ill-formed.
>
> 4. Otherwise, an expression e can be explicitly converted to a type T using a static_cast of the form static_-
> cast<T>(e) if the declaration T t(e); is well-formed, for some invented temporary variable t. [...]
Currently when checking p3 Clang will diagnose `static_cast<T&&>(e)` as invalid if the argument is not reference compatible with `T`. However I believe the correct behavior is to also check p4 in those cases. For example:
```
double y = 42;
static_cast<int&&>(y); // this should be OK. 'int&& t(y)' is well formed
```
Note that we still don't check p4 for non-reference-compatible types which are reference-related since `T&& t(e);` should never be well formed in those cases.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D26231
llvm-svn: 285872
mismatched dynamic exception specifications in expressions from an error to a
warning, since this is no longer ill-formed in C++1z.
Allow reference binding of a reference-to-non-noexcept function to a noexcept
function lvalue. As defect resolutions, also allow a conditional between
noexcept and non-noexcept function lvalues to produce a non-noexcept function
lvalue (rather than decaying to a function pointer), and allow function
template argument deduction to deduce a reference to non-noexcept function when
binding to a noexcept function type.
llvm-svn: 284905
a scoped enumeration type to an integral or floating type,
properly. There was an over-eager assertion, and it was missing the
floating-point case.
Fixes PR9107/<rdar://problem/8937402>.
llvm-svn: 125825