Currently, when marshaling a dynamic AST matchers, we check for the type
and value validity of matcher arguments at the same time for some matchers.
For instance, when marshaling hasAttr("foo"), the argument is first type
checked to ensure it's a string and then checked to see if that string can
locate an attribute with that name. Similar happens for other enumeration
conversions like cast kinds or unary operator kinds. If the type is
correct but the value cannot be looked up, we make a best-effort attempt
to find a nearby name that the user might have meant, but if one cannot
be found, we throw our hands up and claim the types don't match.
This has an unfortunate behavior that when the user enters something of
the correct type but a best guess cannot be located, you get confusing
error messages like:
Incorrect type for arg 1. (Expected = string) != (Actual = String).
This patch splits the argument check into two parts: if the types don't
match, give a type diagnostic. If the type matches but the value cannot
be converted, give a best guess diagnostic or a value could not be
located diagnostic. This addresses PR47057.
There can be Macros that are tagged with `modifiable`. Thus verifying
`canModifyAllDescendants` is not sufficient to avoid macros when deep
copying.
We think the `TokenBuffer` could inform us whether a `Token` comes from
a macro. We'll look into that when we can surface this information
easily, for instance in unit tests for `ComputeReplacements`.
Differential Revision: https://reviews.llvm.org/D88034
* Introduce `TreeTest.cpp` to unit test `Tree.h`
* Add `generateAllTreesWithShape` to generating test cases
* Add tests for `findFirstLeaf` and `findLastLeaf`
* Fix implementations of `findFirstLeaf` and `findLastLeaf` that had
been broken when empty `Tree` were present.
Differential Revision: https://reviews.llvm.org/D87779
There are several `::IsStructurallyEquivalent` overloads for Decl subclasses
that are used for comparing declarations. There is also one overload that takes
just two Decl pointers which ends up queuing the passed Decls to be later
compared in `CheckKindSpecificEquivalence`.
`CheckKindSpecificEquivalence` implements the dispatch logic for the different
Decl subclasses. It is supposed to hand over the queued Decls to the
subclass-specific `::IsStructurallyEquivalent` overload that will actually
compare the Decl instance. It also seems to implement a few pieces of actual
node comparison logic inbetween the dispatch code.
This implementation causes that the different overloads of
`::IsStructurallyEquivalent` do different (and sometimes no) comparisons
depending on which overload of `::IsStructurallyEquivalent` ends up being
called.
For example, if I want to compare two FieldDecl instances, then I could either
call the `::IsStructurallyEquivalent` with `Decl *` or with `FieldDecl *`
parameters. The overload that takes FieldDecls is doing a correct comparison.
However, the `Decl *` overload just queues the Decl pair.
`CheckKindSpecificEquivalence` has no dispatch logic for `FieldDecl`, so it
always returns true and never does any actual comparison.
On the other hand, if I try to compare two FunctionDecl instances the two
possible overloads of `::IsStructurallyEquivalent` have the opposite behaviour:
The overload that takes `FunctionDecl` pointers isn't comparing the names of the
FunctionDecls while the overload taking a plain `Decl` ends up comparing the
function names (as the comparison logic for that is implemented in
`CheckKindSpecificEquivalence`).
This patch tries to make this set of functions more consistent by making
`CheckKindSpecificEquivalence` a pure dispatch function without any
subclass-specific comparison logic. Also the dispatch logic is now autogenerated
so it can no longer miss certain subclasses.
The comparison code from `CheckKindSpecificEquivalence` is moved to the
respective `::IsStructurallyEquivalent` overload so that the comparison result
no longer depends if one calls the `Decl *` overload or the overload for the
specific subclass. The only difference is now that the `Decl *` overload is
queuing the parameter while the subclass-specific overload is directly doing the
comparison.
`::IsStructurallyEquivalent` is an implementation detail and I don't think the
behaviour causes any bugs in the current implementation (as carefully calling
the right overload for the different classes works around the issue), so the
test for this change is that I added some new code for comparing `MemberExpr`.
The new comparison code always calls the dispatching overload and it previously
failed as the dispatch didn't support FieldDecls.
Reviewed By: martong, a_sidorin
Differential Revision: https://reviews.llvm.org/D87619
Currently newer clang-format options cannot be included in .clang-format files, if not all users can be forced to use an updated version.
This patch tries to solve this by adding an option to clang-format, enabling to ignore unknown (newer) options.
Differential Revision: https://reviews.llvm.org/D86137
Some Java style guides and IDEs group Java static imports after
non-static imports. This patch allows clang-format to control
the location of static imports.
Patch by: @bc-lee
Reviewed By: MyDeveloperDay, JakeMerdichAMD
Differential Revision: https://reviews.llvm.org/D87201
https://bugs.llvm.org/show_bug.cgi?id=47461
The following change {D80940} caused a regression in code which ifdef's around the try and catch block cause incorrect brace placement around the catch
```
try
{
}
catch (...) {
// This is not a small function
bar = 1;
}
}
```
The brace after the catch will be placed on a newline
Reviewed By: curdeius
Differential Revision: https://reviews.llvm.org/D87291
//AST Matcher// `hasBody` is a polymorphic matcher that behaves
differently for loop statements and function declarations. The main
difference is the for functions declarations it does not only call
`FunctionDecl::getBody()` but first checks whether the declaration in
question is that specific declaration which has the body by calling
`FunctionDecl::doesThisDeclarationHaveABody()`. This is achieved by
specialization of the template `GetBodyMatcher`. Unfortunately template
specializations do not catch the descendants of the class for which the
template is specialized. Therefore it does not work correcly for the
descendants of `FunctionDecl`, such as `CXXMethodDecl`,
`CXXConstructorDecl`, `CXXDestructorDecl` etc. This patch fixes this
issue by using a template metaprogram.
The patch also introduces a new matcher `hasAnyBody` which matches
declarations which have a body present in the AST but not necessarily
belonging to that particular declaration.
Differential Revision: https://reviews.llvm.org/D87527
The analysis for const-ness of local variables required a view generally useful
matchers that are extracted into its own patch.
They are decompositionDecl and forEachArgumentWithParamType, that works
for calls through function pointers as well.
This is a reupload of https://reviews.llvm.org/D72505, that already landed,
but had to be reverted due to a GCC crash on powerpc
(https://reviews.llvm.org/rG4c48ea68e491cb42f1b5d43ffba89f6a7f0dadc4)
Because this took a long time to adress, i decided to redo this patch and
have a clean workflow.
I try to coordinate with someone that has a PPC to apply this patch and
test for the crash. If everything is fine, I intend to just commit.
If the crash is still happening, i hope to at least find the cause.
Differential Revision: https://reviews.llvm.org/D87588
Right now the ASTImporter assumes for most Expr nodes that they are always equal
which leads to non-compatible declarations ending up being merged. This patch
adds the basic framework for comparing Stmts (and with that also Exprs) and
implements the custom checks for a few Stmt subclasses. I'll implement the
remaining subclasses in follow up patches (mostly because there are a lot of
subclasses and some of them require further changes like having GNU language in
the testing framework)
The motivation for this is that in LLDB we try to import libc++ source code and
some of the types we are importing there contain expressions (e.g. because they
use `enable_if<expr>`), so those declarations are currently merged even if they
are completely different (e.g. `enable_if<value> ...` and `enable_if<!value>
...` are currently considered equal which is clearly not true).
Reviewed By: martong, balazske
Differential Revision: https://reviews.llvm.org/D87444
In a future patch
* Implement helper function to generate Trees for tests
* and test Tree methods, namely `findFirstLeaf` and `findLastLeaf`
Differential Revision: https://reviews.llvm.org/D87533
Summary:
This is the first patch implementing the new Flang driver as outlined in [1],
[2] & [3]. It creates Flang driver (`flang-new`) and Flang frontend driver
(`flang-new -fc1`). These will be renamed as `flang` and `flang -fc1` once the
current Flang throwaway driver, `flang`, can be replaced with `flang-new`.
Currently only 2 options are supported: `-help` and `--version`.
`flang-new` is implemented in terms of libclangDriver, defaulting the driver
mode to `FlangMode` (added to libclangDriver in [4]). This ensures that the
driver runs in Flang mode regardless of the name of the binary inferred from
argv[0].
The design of the new Flang compiler and frontend drivers is inspired by it
counterparts in Clang [3]. Currently, the new Flang compiler and frontend
drivers re-use Clang libraries: clangBasic, clangDriver and clangFrontend.
To identify Flang options, this patch adds FlangOption/FC1Option enums.
Driver::printHelp is updated so that `flang-new` prints only Flang options.
The new Flang driver is disabled by default. To enable it, set
`-DBUILD_FLANG_NEW_DRIVER=ON` when configuring CMake and add clang to
`LLVM_ENABLE_PROJECTS` (e.g. -DLLVM_ENABLE_PROJECTS=“clang;flang;mlir”).
[1] “RFC: new Flang driver - next steps”
http://lists.llvm.org/pipermail/flang-dev/2020-July/000470.html
[2] “RFC: Adding a fortran mode to the clang driver for flang”
http://lists.llvm.org/pipermail/cfe-dev/2019-June/062669.html
[3] “RFC: refactoring libclangDriver/libclangFrontend to share with Flang”
http://lists.llvm.org/pipermail/cfe-dev/2020-July/066393.html
[4] https://reviews.llvm.org/rG6bf55804924d5a1d902925ad080b1a2b57c5c75c
co-authored-by: Andrzej Warzynski <andrzej.warzynski@arm.com>
Reviewed By: richard.barton.arm, sameeranjoshi
Differential Revision: https://reviews.llvm.org/D86089
In some situation shifts can be treated as a template, and is thus formatted as one. So, by doing a couple extra checks to assure that the condition doesn't contain a template, and is in fact a bit shift should solve this problem.
This is a fix for [[ https://bugs.llvm.org/show_bug.cgi?id=46969 | bug 46969 ]]
Reviewed By: MyDeveloperDay
Patch By: Saldivarcher
Differential Revision: https://reviews.llvm.org/D86581
* Do not visit `CXXDefaultArgExpr`
* To build `CallArguments` nodes, just go through non-default arguments
Differential Revision: https://reviews.llvm.org/D87249
MSVC's cl.exe has a few command line arguments which start with -M such
as "-MD", "-MDd", "-MT", "-MTd", "-MP".
These arguments are not dependency file generation related, and these
arguments were being removed by getClangStripDependencyFileAdjuster()
which was wrong.
Differential revision: https://reviews.llvm.org/D86999
Decl::dump is primarily used for debugging to visualise the current state of a
declaration. Usually Decl::dump just displays the current state of the Decl and
doesn't actually change any of its state, however since commit
457226e02a the method actually started loading
additional declarations from the ExternalASTSource. This causes that calling
Decl::dump during a debugging session now actually does permanent changes to the
AST and will cause the debugged program run to deviate from the original run.
The change that caused this behaviour is the addition of
`hasConstexprDestructor` (which is called from the TextNodeDumper) which
performs a lookup into the current CXXRecordDecl to find the destructor. All
other similar methods just return their respective bit in the DefinitionData
(which obviously doesn't have such side effects).
This just changes the node printer to emit "unknown_constexpr" in case a
CXXRecordDecl is dumped that could potentially call into the ExternalASTSource
instead of the usually empty string/"constexpr". For CXXRecordDecls that can
safely be dumped the old behaviour is preserved
Reviewed By: bruno
Differential Revision: https://reviews.llvm.org/D80878
When using the always break after return type setting:
Before:
SomeType funcdecl(LIST(uint64_t));
After:
SomeType
funcdecl(LIST(uint64_t));"
Reviewed By: MyDeveloperDay
Differential Revision: https://reviews.llvm.org/D87007
Before: _Atomic(uint64_t) * a;
After: _Atomic(uint64_t) *a;
This treats _Atomic the same as the the TypenameMacros and decltype. It
also allows some cleanup by removing checks whether the token before a
paren is kw_decltype and instead checking for TT_TypeDeclarationParen.
While touching this code also extend the decltype test cases to also check
for typeof() and _Atomic(T).
Reviewed By: MyDeveloperDay
Differential Revision: https://reviews.llvm.org/D86959
This adds a `AttributeMacros` configuration option that causes certain
identifiers to be parsed like a __attribute__((foo)) annotation.
This is motivated by our CHERI C/C++ fork which adds a __capability
qualifier for pointer/reference. Without this change clang-format parses
many type declarations as multiplications/bitwise-and instead.
I initially considered adding "__capability" as a new clang-format keyword,
but having a list of macros that should be treated as attributes is more
flexible since it can be used e.g. for static analyzer annotations or other language
extensions.
Example: std::vector<foo * __capability> -> std::vector<foo *__capability>
Depends on D86775 (to apply cleanly)
Reviewed By: MyDeveloperDay, jrtc27
Differential Revision: https://reviews.llvm.org/D86782
Currently a test failure always reports a line number inside verifyFormat()
which is not very helpful to see which test failed. With this change we now
emit the line number where the verify function was called. When using an
IDE such as CLion, the output now includes a clickable link that points to
the call site.
Reviewed By: MyDeveloperDay
Differential Revision: https://reviews.llvm.org/D86926
The new overloads apply directly to a node, like the
`clang::ast_matchers::match` functions, Rather than generating an
`EditGenerator` combinator.
Differential Revision: https://reviews.llvm.org/D87031
This patch restores the default traversal for Transformer's `makeRule` to
`TK_AsIs`. The implicit mode has proven problematic.
Differential Revision: https://reviews.llvm.org/D87048
When guessing whether a closing paren is then end of a cast expression also
skip over pointer qualifiers while looking for TT_PointerOrReference.
This prevents some address-of and dereference operators from being parsed
as a binary operator.
Before:
x = (foo *const) * v;
x = (foo *const volatile restrict __attribute__((foo)) _Nonnull _Null_unspecified _Nonnull) & v;
After:
x = (foo *const)*v;
x = (foo *const volatile restrict __attribute__((foo)) _Nonnull _Null_unspecified _Nonnull)&v;
Reviewed By: MyDeveloperDay
Differential Revision: https://reviews.llvm.org/D86716
Motivating use case is ".cu.cc" extensions used in some bazel projects.
Alternative is to work around this with IncludeIsMainRegex in styles.
I proposed this approach because it seems like a better default.
Differential Revision: https://reviews.llvm.org/D86597