There's no benefit to using `DebugLoc` here. Moreover, this will let a
follow-up commit work with `MDScope` directly instead of `DebugLoc`.
llvm-svn: 233610
This pushes the use of PointerType::getElementType up into several
callers - I'll essentially just have to keep pushing that up the stack
until I can eliminate every call to it...
llvm-svn: 233604
Keep a note in the materializer that we are stripping debug info so that
user doing a lazy read of the module don't hit outdated formats.
Thanks to Duncan for suggesting the fix.
llvm-svn: 233603
Don't use `DebugLoc::getFnDebugLoc()`, which creates new `MDLocation`s,
in the backend. We just want to grab the subprogram here anyway.
llvm-svn: 233601
Remove old API for `DebugLoc` now that all the callers have been
updated. If this broke your out-of-tree build, here's a quick map from
the old API to the new one:
DebugLoc DebugLoc::getFromMDLocation(MDNode *)
=> DebugLoc::DebugLoc(MDLocation *)
=> explicit DebugLoc::DebugLoc(MDNode *) // works with broken code
MDNode *DebugLoc::getAsMDNode(LLVMContext &)
=> MDLocation *DebugLoc::get()
=> DebugLoc::operator MDLocation *()
=> MDNode *DebugLoc::getAsMDNode() // works with broken code
bool DebugLoc::isUnknown()
=> DebugLoc::operator MDLocation *()
i.e.: if (MDLocation *DL = ...)
=> DebugLoc::operator bool() // works with broken code
i.e.: if (DebugLoc DL = ...)
void DebugLoc::getScopeAndInlinedAt(MDNode *&, MDNode *&)
=> use: MDNode *DebugLoc::getScope()
and: MDLocation *DebugLoc::getInlinedAt()
MDNode *DebugLoc::getScopeNode(LLVMContext &)
=> MDNode *DebugLoc::getInlinedAtScope()
void DebugLoc::dump(LLVMContext &)
=> void DebugLoc::dump()
void DebugLoc::getFnDebugLoc(LLVMContext &)
=> void DebugLoc::getFnDebugLoc()
MDNode *DebugLoc::getScope(LLVMContext &)
=> MDNode *DebugLoc::getScope()
MDNode *DebugLoc::getInlinedAt(LLVMContext &)
=> MDLocation *DebugLoc::getInlinedAt()
I've noted above the only functions that won't crash on broken code (due
to downcasting to `MDLocation`). If your code could be dealing with
broken IR (i.e., you haven't run the verifier yet, or you've used a
temporary node that will eventually (but not yet) get RAUW'ed to an
`MDLocation`), you need to restrict yourself to those.
llvm-svn: 233599
This fixes the visibility of symbols in certain edge cases involving aliases
with multiple levels of indirection.
Fixes PR19582.
Differential Revision: http://reviews.llvm.org/D8586
llvm-svn: 233595
Update lib/IR and lib/Bitcode to use the new `DebugLoc` API. Added an
explicit conversion to `bool` (avoiding a conversion to `MDLocation`),
since a couple of these use cases need to handle broken code.
llvm-svn: 233585
There was a change to the way some of the HTM and crypto builtins are being
handled in Clang. Previously, some of the builtins were dealt with in the
CodeGenFunction::EmitPPCBuiltinExpr method (in order to do range checking on
constant arguments). These check will been moved to Sema
http://reviews.llvm.org/D8672), which means those builtins will not be handled
in the EmitPPCBuiltinExpr method anymore. As a result, the definition of the
intrinsics in IntrinsicsPowerPC.td needs to be modified to inherit from the
GCCBuiltin definition.
http://reviews.llvm.org/D8673
llvm-svn: 233581
Rewrite `DebugLoc` with a cleaner API that reflects its current status
as a wrapper around an `MDLocation` pointer.
- Add accessors/constructors to/from `MDLocation`.
- Simplify construction from `MDNode`.
- Remove unnecessary `LLVMContext` from APIs.
- Drop some API that isn't useful any more.
- Rewrite documentation.
Actually, I've left the old API behind temporarily at the bottom of the
class so that I can update callers in separate commits. I'll remove it
once the callers are updated.
llvm-svn: 233573
Write `MDLocation::getInlinedAtScope()` and use it to re-implement
`DebugLoc::getScopeNode()` (and simplify `DISubprogram::Verify()`).
This follows the inlined-at linked list and returns the scope of the
deepest/last location.
llvm-svn: 233568
Add operand checks for `MDLexicalBlock` and `MDLexicalBlockFile`. Like
`MDLocalVariable` and `MDLocation`, these nodes always require a scope.
There was no test bitrot to fix here (just updated the serialization
tests in test/Assembler/mdlexicalblock.ll).
llvm-svn: 233561
Check operands of `MDSubprogram`s in the verifier, and update the
accessors and factory functions to use more specific types.
There were a lot of broken testcases, which I fixed in r233466. If you
have out-of-tree tests for debug info, you probably need similar changes
to the ones I made there.
llvm-svn: 233559
These sections are never looked up and we know when have to create them. Use
that to save adding them to the regular map and avoid a symbol->string->symbol
conversion for the group symbol.
This also makes the implementation independent of the details of how unique
sections are implemented.
llvm-svn: 233539
MCJIT.
This patch decouples the two responsibilities of the RTDyldMemoryManager class,
memory management and symbol resolution, into two new classes:
RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver.
The symbol resolution interface is modified slightly, from:
uint64_t getSymbolAddress(const std::string &Name);
to:
RuntimeDyld::SymbolInfo findSymbol(const std::string &Name);
The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld
and others to reason about non-strong/non-exported symbols.
The memory management interface removes the following method:
void notifyObjectLoaded(ExecutionEngine *EE,
const object::ObjectFile &) {}
as it is not related to memory management. (Note: Backwards compatibility *is*
maintained for this method in MCJIT and OrcMCJITReplacement, see below).
The RTDyldMemoryManager class remains in-tree for backwards compatibility.
It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from
RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which
just subclasses RuntimeDyld::MemoryManager and reintroduces the
notifyObjectLoaded method for backwards compatibility).
The EngineBuilder class retains the existing method:
EngineBuilder&
setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
and includes two new methods:
EngineBuilder&
setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
EngineBuilder&
setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR);
Clients should use EITHER:
A single call to setMCJITMemoryManager with an RTDyldMemoryManager.
OR (exclusive)
One call each to each of setMemoryManager and setSymbolResolver.
This patch should be fully compatible with existing uses of RTDyldMemoryManager.
If it is not it should be considered a bug, and the patch either fixed or
reverted.
If clients find the new API to be an improvement the goal will be to deprecate
and eventually remove the RTDyldMemoryManager class in favor of the new classes.
llvm-svn: 233509
All the ports have been fixed to read the feature bits from the subtarget passed
to the print methods. Also, delete the call to setAvailableFeatures in the
constructor of NVPTX's instprinter as the instprinter wasn't using the feature
bits anywhere.
llvm-svn: 233486
Add verify checks for `MDType` subclasses and for `MDCompileUnit`.
These new checks don't yet incorporate everything from `Verify()`, but
at least they sanity check the operands. Also downcast accessors as
possible.
A lot of these accessors can't be downcast as far as we'd like because
of arrays of typed objects (stored in a generic `MDTuple`) and
`MDString`-based type references. Eventually I'll port over `DIRef<>`
and `DITypedArray<>` from `DebugInfo.h` to clean those up as well.
Updated bitrotted testcases separately in r233415 and r233443 to reduce
churn on the off-chance this needs to be reverted.
llvm-svn: 233446
per-function subtarget.
Currently, code-gen passes the default or generic subtarget to the constructors
of MCInstPrinter subclasses (see LLVMTargetMachine::addPassesToEmitFile), which
enables some targets (AArch64, ARM, and X86) to change their instprinter's
behavior based on the subtarget feature bits. Since the backend can now use
different subtargets for each function, instprinter has to be changed to use the
per-function subtarget rather than the default subtarget.
This patch takes the first step towards enabling instprinter to change its
behavior based on the per-function subtarget. It adds a bit "PassSubtarget" to
AsmWriter which tells table-gen to pass a reference to MCSubtargetInfo to the
various print methods table-gen auto-generates.
I will follow up with changes to instprinters of AArch64, ARM, and X86.
llvm-svn: 233411
Expose bpf pseudo load instruction via intrinsic. It is used by front-ends that
can encode file descriptors directly into IR instead of relying on relocations.
llvm-svn: 233396
Check fields from `MDLocalVariable` and `MDGlobalVariable` and change
the accessors to downcast to the right types. `getType()` still returns
`Metadata*` since it could be an `MDString`-based reference.
Since local variables require non-null scopes, I also updated `LLParser`
to require a `scope:` field.
A number of testcases had grown bitrot and started failing with this
patch; I committed them separately in r233349. If I just broke your
out-of-tree testcases, you're probably hitting similar problems (so have
a look there).
llvm-svn: 233389
This re-adds float2int to the tree, after fixing PR23038. It turns
out the argument to APSInt() is true-if-unsigned, rather than
true-if-signed :(. Added testcase and explanatory comment.
llvm-svn: 233370
We don't have any logic to emit those tables yet, so the SDAG lowering
of this intrinsic is just a stub. We can see the intrinsic in the
prepared IR, though.
llvm-svn: 233354
Check accessors of `MDLocation`, and change them to `cast<>` down to the
right types. Also add type-safe factory functions.
All the callers that handle broken code need to use the new versions of
the accessors (`getRawScope()` instead of `getScope()`) that still
return `Metadata*`. This is also necessary for things like
`MDNodeKeyImpl<MDLocation>` (in LLVMContextImpl.h) that need to unique
the nodes when their operands might still be forward references of the
wrong type.
In the `Value` hierarchy, consumers that handle broken code use
`getOperand()` directly. However, debug info nodes have a ton of
operands, and their order (even their existence) isn't stable yet. It's
safer and more maintainable to add an explicit "raw" accessor on the
class itself.
llvm-svn: 233322
There is something in link.exe that requires a relocation to use a
global symbol. Not doing so breaks the chrome build on windows.
This patch sets isWeak for that to work. To compensate,
we then need to look past those symbols when not creating relocations.
This patch includes an ELF test that matches GNU as behaviour.
I am still reducing the chrome build issue and will add a test
once that is done.
llvm-svn: 233318
Summary:
This patch is an attempt at making `DenseMapIterator`s "fail-fast".
Fail-fast iterators that have been invalidated due to insertion into
the host `DenseMap` deterministically trip an assert (in debug mode)
on access, instead of non-deterministically hitting memory corruption
issues.
Enabling fail-fast iterators breaks the LLVM C++ ABI, so they are
predicated on `LLVM_ENABLE_ABI_BREAKING_CHECKS`.
`LLVM_ENABLE_ABI_BREAKING_CHECKS` by default flips with
`LLVM_ENABLE_ASSERTS`, but can be clamped to ON or OFF using the CMake /
autoconf build system.
Reviewers: chandlerc, dexonsmith, rnk, zturner
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D8351
llvm-svn: 233310
This patch adds supports for the vector constant folding of TRUNCATE and FP_EXTEND instructions and tidies up the SINT_TO_FP and UINT_TO_FP instructions to match.
It also moves the vector constant folding for the FNEG and FABS instructions to use the DAG.getNode() functionality like the other unary instructions.
Differential Revision: http://reviews.llvm.org/D8593
llvm-svn: 233224
We don't have any logic to emit those tables yet, so the sdag lowering
of this intrinsic is just a stub. We can see the intrinsic in the
prepared IR, though.
llvm-svn: 233209
This patch adds Hardware Transaction Memory (HTM) support supported by ISA 2.07
(POWER8). The intrinsic support is based on GCC one [1], but currently only the
'PowerPC HTM Low Level Built-in Function' are implemented.
The HTM instructions follows the RC ones and the transaction initiation result
is set on RC0 (with exception of tcheck). Currently approach is to create a
register copy from CR0 to GPR and comapring. Although this is suboptimal, since
the branch could be taken directly by comparing the CR0 value, it generates code
correctly on both test and branch and just return value. A possible future
optimization could be elimitate the MFCR instruction to branch directly.
The HTM usage requires a recently newer kernel with PPC HTM enabled. Tested on
powerpc64 and powerpc64le.
This is send along a clang patch to enabled the builtins and option switch.
[1] https://gcc.gnu.org/onlinedocs/gcc/PowerPC-Hardware-Transactional-Memory-Built-in-Functions.html
Phabricator Review: http://reviews.llvm.org/D8247
llvm-svn: 233204
The previous logic was to first try without relocations at all
and failing that stop on the first defined symbol.
That was inefficient and incorrect in the case part of the
expression could be simplified and another part could not
(see included test).
We now stop the evaluation when we get to a variable whose value
can change (i.e. is weak).
llvm-svn: 233187
This ensures that we're building and testing the CompileOnDemand layer, at least
in a basic way.
Currently x86-64 only, and with limited to no library calls enabled (depending
on host platform). Patches welcome. ;)
To enable access to the lazy JIT, this patch replaces the '-use-orcmcjit' lli
option with a new option:
'-jit-kind={ mcjit | orc-mcjit | orc-lazy }'.
All regression tests are updated to use the new option, and one trivial test of
the new lazy JIT is added.
llvm-svn: 233182