Commit Graph

10 Commits

Author SHA1 Message Date
Sanjay Patel e20437f9af Match new shuffle codegen for MOVHPD patterns
Add patterns to match SSE (shufpd) and AVX (vpermilpd) shuffle codegen
when storing the high element of a v2f64. The existing patterns were
only checking for an unpckh type of shuffle. 

http://llvm.org/bugs/show_bug.cgi?id=21791

Differential Revision: http://reviews.llvm.org/D6586

llvm-svn: 223929
2014-12-10 16:58:54 +00:00
Simon Pilgrim fd080af0c5 [X86][SSE] Bitcast assertion in XFormVExtractWithShuffleIntoLoad
Minor patch to fix an issue in XFormVExtractWithShuffleIntoLoad where a load is unary shuffled, then bitcast (to a type with the same number of elements) before extracting an element.

An undef was created for the second shuffle operand using the original (post-bitcasted) vector type instead of the pre-bitcasted type like the rest of the shuffle node - this was then causing an assertion on the different types later on inside SelectionDAG::getVectorShuffle.

Differential Revision: http://reviews.llvm.org/D5917

llvm-svn: 220592
2014-10-24 21:04:41 +00:00
Chandler Carruth 99627bfbff [x86] Enable the new vector shuffle lowering by default.
Update the entire regression test suite for the new shuffles. Remove
most of the old testing which was devoted to the old shuffle lowering
path and is no longer relevant really. Also remove a few other random
tests that only really exercised shuffles and only incidently or without
any interesting aspects to them.

Benchmarking that I have done shows a few small regressions with this on
LNT, zero measurable regressions on real, large applications, and for
several benchmarks where the loop vectorizer fires in the hot path it
shows 5% to 40% improvements for SSE2 and SSE3 code running on Sandy
Bridge machines. Running on AMD machines shows even more dramatic
improvements.

When using newer ISA vector extensions the gains are much more modest,
but the code is still better on the whole. There are a few regressions
being tracked (PR21137, PR21138, PR21139) but by and large this is
expected to be a win for x86 generated code performance.

It is also more correct than the code it replaces. I have fuzz tested
this extensively with ISA extensions up through AVX2 and found no
crashes or miscompiles (yet...). The old lowering had a few miscompiles
and crashers after a somewhat smaller amount of fuzz testing.

There is one significant area where the new code path lags behind and
that is in AVX-512 support. However, there was *extremely little*
support for that already and so this isn't a significant step backwards
and the new framework will probably make it easier to implement lowering
that uses the full power of AVX-512's table-based shuffle+blend (IMO).

Many thanks to Quentin, Andrea, Robert, and others for benchmarking
assistance. Thanks to Adam and others for help with AVX-512. Thanks to
Hal, Eric, and *many* others for answering my incessant questions about
how the backend actually works. =]

I will leave the old code path in the tree until the 3 PRs above are at
least resolved to folks' satisfaction. Then I will rip it (and 1000s of
lines of code) out. =] I don't expect this flag to stay around for very
long. It may not survive next week.

llvm-svn: 219046
2014-10-04 03:52:55 +00:00
Chandler Carruth 47ebd24e24 [x86] Teach the vector combiner that picks a canonical shuffle from to
support transforming the forms from the new vector shuffle lowering to
use 'movddup' when appropriate.

A bunch of the cases where we actually form 'movddup' don't actually
show up in the test results because something even later than DAG
legalization maps them back to 'unpcklpd'. If this shows back up as
a performance problem, I'll probably chase it down, but it is at least
an encoded size loss. =/

To make this work, also always do this canonicalizing step for floating
point vectors where the baseline shuffle instructions don't provide any
free copies of their inputs. This also causes us to canonicalize
unpck[hl]pd into mov{hl,lh}ps (resp.) which is a nice encoding space
win.

There is one test which is "regressed" by this: extractelement-load.
There, the test case where the optimization it is testing *fails*, the
exact instruction pattern which results is slightly different. This
should probably be fixed by having the appropriate extract formed
earlier in the DAG, but that would defeat the purpose of the test.... If
this test case is critically important for anyone, please let me know
and I'll try to work on it. The prior behavior was actually contrary to
the comment in the test case and seems likely to have been an accident.

llvm-svn: 217738
2014-09-14 22:41:37 +00:00
Chandler Carruth 74ec9e19ee [SDAG] Re-instate r215611 with a fix to a pesky X86 DAG combine.
This combine is essentially combining target-specific nodes back into target
independent nodes that it "knows" will be combined yet again by a target
independent DAG combine into a different set of target-independent nodes that
are legal (not custom though!) and thus "ok". This seems... deeply flawed. The
crux of the problem is that we don't combine un-legalized shuffles that are
introduced by legalizing other operations, and thus we don't see a very
profitable combine opportunity. So the backend just forces the input to that
combine to re-appear.

However, for this to work, the conditions detected to re-form the unlegalized
nodes must be *exactly* right. Previously, failing this would have caused poor
code (if you're lucky) or a crasher when we failed to select instructions.
After r215611 we would fall back into the legalizer. In some cases, this just
"fixed" the crasher by produces bad code. But in the test case added it caused
the legalizer and the dag combiner to iterate forever.

The fix is to make the alignment checking in the x86 side of things match the
alignment checking in the generic DAG combine exactly. This isn't really a
satisfying or principled fix, but it at least make the code work as intended.
It also highlights that it would be nice to detect the availability of under
aligned loads for a given type rather than bailing on this optimization. I've
left a FIXME to document this.

Original commit message for r215611 which covers the rest of the chang:
  [SDAG] Fix a case where we would iteratively legalize a node during
  combining by replacing it with something else but not re-process the
  node afterward to remove it.

  In a truly remarkable stroke of bad luck, this would (in the test case
  attached) end up getting some other node combined into it without ever
  getting re-processed. By adding it back on to the worklist, in addition
  to deleting the dead nodes more quickly we also ensure that if it
  *stops* being dead for any reason it makes it back through the
  legalizer. Without this, the test case will end up failing during
  instruction selection due to an and node with a type we don't have an
  instruction pattern for.

It took many million runs of the shuffle fuzz tester to find this.

llvm-svn: 216537
2014-08-27 11:22:16 +00:00
Stephen Lin d24ab20e9b Mass update to CodeGen tests to use CHECK-LABEL for labels corresponding to function definitions for more informative error messages. No functionality change and all updated tests passed locally.
This update was done with the following bash script:

  find test/CodeGen -name "*.ll" | \
  while read NAME; do
    echo "$NAME"
    if ! grep -q "^; *RUN: *llc.*debug" $NAME; then
      TEMP=`mktemp -t temp`
      cp $NAME $TEMP
      sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
      while read FUNC; do
        sed -i '' "s/;\(.*\)\([A-Za-z0-9_-]*\):\( *\)$FUNC: *\$/;\1\2-LABEL:\3$FUNC:/g" $TEMP
      done
      sed -i '' "s/;\(.*\)-LABEL-LABEL:/;\1-LABEL:/" $TEMP
      sed -i '' "s/;\(.*\)-NEXT-LABEL:/;\1-NEXT:/" $TEMP
      sed -i '' "s/;\(.*\)-NOT-LABEL:/;\1-NOT:/" $TEMP
      sed -i '' "s/;\(.*\)-DAG-LABEL:/;\1-DAG:/" $TEMP
      mv $TEMP $NAME
    fi
  done

llvm-svn: 186280
2013-07-14 06:24:09 +00:00
Eli Friedman cbd3ba91b7 Make sure this DAGCombine actually returns an UNDEF of the correct type; PR10476.
llvm-svn: 135993
2011-07-25 22:25:42 +00:00
Dan Gohman a080159a7c Convert more tests to avoid llvm-as.
llvm-svn: 81545
2009-09-11 18:36:27 +00:00
Dan Gohman e862b3dd96 Yonah does not support x86-64. Change the -mcpu value to one that does.
llvm-svn: 63561
2009-02-02 22:50:08 +00:00
Evan Cheng 1120279ae6 Instead of a vector load, shuffle and then extract an element. Load the element from address with an offset.
pshufd $1, (%rdi), %xmm0
        movd %xmm0, %eax
=>
        movl 4(%rdi), %eax

llvm-svn: 51026
2008-05-13 08:35:03 +00:00