This integration tests runs a fused and non-fused version of
sampled matrix multiplication. Both should eventually have the
same performance!
NOTE: relies on pending tensor.init fix!
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D110444
This revision makes sure that when the output buffer materializes locally
(in contrast with the passing in of output tensors either in-place or not
in-place), the zero initialization assumption is preserved. This also adds
a bit more documentation on our sparse kernel assumption (viz. TACO
assumptions).
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D110442
New mode option that allows for either running the default fusion kind that happens today or doing either of producer-consumer or sibling fusion. This will also be helpful to minimize the compile-time of the fusion tests.
Reviewed By: bondhugula, dcaballe
Differential Revision: https://reviews.llvm.org/D110102
The sparse constant provides a constant tensor in coordinate format. We first split the sparse constant into a constant tensor for indices and a constant tensor for values. We then generate a loop to fill a sparse tensor in coordinate format using the tensors for the indices and the values. Finally, we convert the sparse tensor in coordinate format to the destination sparse tensor format.
Add tests.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D110373
Let the calling pass or pattern replace the uses of the original root operation. Internally, the tileAndFuse still replaces uses and updates operands but only of newly created operations.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D110169
This revision adds a
```
FlatAffineValueConstraints(ValueRange ivs, ValueRange lbs, ValueRange ubs)
```
method and use it in hoist padding.
Differential Revision: https://reviews.llvm.org/D110427
This revision extracts padding hoisting in a new file and cleans it up in prevision of future improvements and extensions.
Differential Revision: https://reviews.llvm.org/D110414
When splitting with linalg.copy, cannot write into the destination alloc directly. Instead, write into a subview of the alloc.
Differential Revision: https://reviews.llvm.org/D110512
This patch adds functionality to FlatAffineConstraints to remove local
variables using equalities. This helps in keeping output representation of
FlatAffineConstraints smaller.
This patch is part of a series of patches aimed at generalizing affine
dependence analysis.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D110056
We currently, incorrectly, assume that a range always has at least
one element when building a contiguous range. This commit adds
a proper empty check to avoid crashing.
Differential Revision: https://reviews.llvm.org/D110457
For such cases, the type of the constant DenseElementsAttr is
different from the transpose op return type.
Reviewed By: rsuderman
Differential Revision: https://reviews.llvm.org/D110446
This patch introduces a generic reduction detection utility that works
across different dialecs. It is mostly a generalization of the reduction
detection algorithm in Affine. The reduction detection logic in Affine,
Linalg and SCFToOpenMP have been replaced with this new generic utility.
The utility takes some basic components of the potential reduction and
returns: 1) the reduced value, and 2) a list with the combiner operations.
The logic to match reductions involving multiple combiner operations disabled
until we can properly test it.
Reviewed By: ftynse, bondhugula, nicolasvasilache, pifon2a
Differential Revision: https://reviews.llvm.org/D110303
This has a few benefits:
* It allows for defining parsers/printer code blocks that
can be shared between operations and attribute/types.
* It removes the weird duplication of generic parser/printer hooks,
which means that newly added hooks only require touching one class.
Differential Revision: https://reviews.llvm.org/D110375
These are among the last operations still defined explicitly in C++. I've
tried to keep this commit as NFC as possible, but these ops
definitely need a non-NFC cleanup at some point.
Differential Revision: https://reviews.llvm.org/D110440
* If the input is a constant splat value, we just
need to reshape it.
* If the input is a general constant with one user,
we can also constant fold it, without bloating
the IR.
Reviewed By: rsuderman
Differential Revision: https://reviews.llvm.org/D110439
This commits updates the remaining usages of the ArrayRef<Value> based
matchAndRewrite/rewrite methods in favor of the new OpAdaptor
overload.
Differential Revision: https://reviews.llvm.org/D110360
This has been a TODO for a long time, and it brings about many advantages (namely nice accessors, and less fragile code). The existing overloads that accept ArrayRef are now treated as deprecated and will be removed in a followup (after a small grace period). Most of the upstream MLIR usages have been fixed by this commit, the rest will be handled in a followup.
Differential Revision: https://reviews.llvm.org/D110293
Initially, the padding transformation and the related operation were only used
to guarantee static shapes of subtensors in tiled operations. The
transformation would not insert the padding operation if the shapes were
already static, and the overall code generation would actively remove such
"noop" pads. However, this transformation can be also used to pack data into
smaller tensors and marshall them into faster memory, regardless of the size
mismatches. In context of expert-driven transformation, we should assume that,
if padding is requested, a potentially padded tensor must be always created.
Update the transformation accordingly. To do this, introduce an optional
`packing` attribute to the `pad_tensor` op that serves as an indication that
the padding is an intentional choice (as opposed to side effect of type
normalization) and should be left alone by cleanups.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D110425
Add support for intersecting, subtracting, complementing and checking equality of sets having divisions.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D110138
This canonicalization pattern complements the tensor.cast(pad_tensor) one in
propagating constant type information when possible. It contributes to the
feasibility of pad hoisting.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D110343
* Do not discard static result type information that cannot be inferred from lower/upper padding.
* Add optional argument to `PadTensorOp::inferResultType` for specifying known result dimensions.
Differential Revision: https://reviews.llvm.org/D110380
This is only noticeable when using an attribute across dialects I think.
Previously the namespace would be ommited, but it wouldn't matter as
long as the generated code stays within a single namespace.
Differential Revision: https://reviews.llvm.org/D110367
When generating code to add an element to SparseTensorCOO (e.g., when doing dense=>sparse conversion), we used to check for nonzero values on the runtime side, whereas now we generate MLIR code to do that check.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D110121
Current warning message in method `addAffineForOpDomain` of mlir/lib/Analysis/AffineStructures.cpp is being printed to the stdout/stderr.
This patch redirects the warning with LLVM_DEBUG following standard llvm practice.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D108340
clang-cl errors out while handling the templated version of tgfmt. This
patch works around the issue by explicitly choosing the non-templated
version of tgfmt, which takes an ArrayRef<std::string>.
More details in this thread:
https://lists.llvm.org/pipermail/cfe-dev/2021-September/068936.html
Thanks @Mehdi Amini for suggesting the fix :)
Differential Revision: https://reviews.llvm.org/D110223
Enables putting types and attributes in sets and in dicts as keys.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D110301
This test makes sure kernels map to efficient sparse code, i.e. all
compressed for-loops, no co-iterating while loops. In addition, this
revision removes the special constant folding inside the sparse
compiler in favor of Mahesh' new generic linalg folding. Thanks!
NOTE: relies on Mahesh fix, which needs to be rebased first
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D110001
When both a DefaultValuedAttr and a successor or variadic region was specified, this would generate invalid C++ declaration. There would be the parameter with a default value, followed by the successors/regions, which don't have a default, which is invalid.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D110205
The current folder of constant -> generic op only handles splat
constants. The same logic holds for scalar constants. Teach the
pattern to handle such cases.
Differential Revision: https://reviews.llvm.org/D109982
This fixes a bug where we discover new information about the arguments of an
already executable edge, but don't visit the arguments. We only visit the arguments, and not the block itself, so this commit shouldn't really affect performance at all.
Fixes PR#51871
Differential Revision: https://reviews.llvm.org/D110197
Should reset the operation to original state when canceling the updates.
Reviewed By: rriddle, ftynse
Differential Revision: https://reviews.llvm.org/D110176
Now not just SUM, but also PRODUCT, AND, OR, XOR. The reductions
MIN and MAX are still to be done (also depends on recognizing
these operations in cmp-select constructs).
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D110203
If no interchange vector is given initialize it with the identity permutation from 0 to number of loops.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D110249
This revision removes the ad-hoc MemRefs that were needed using the old
ABI (when we still passed by value) and replaces them with the shared
StridedMemRef definitions of CRunnerUtils (possible now that we pass by
pointer). This avoids code duplication and makes sure we have a consistent
view of strided memory references in all our support libraries.
Reviewed By: jsetoain
Differential Revision: https://reviews.llvm.org/D110221
This change adds automatic wrapper functoins with emit_c_interface
to all methods in the sparse support library that deal with MEMREFs.
The wrappers will take care of passing MEMREFs by value internally
and by pointer externally, thereby avoiding ABI issues across platforms.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D110219
DialectAsmParser has a `parseAttribute` member that takes a
contextual type, but DialectAsmPrinter doesn't have the corresponding
member to take advantage of it. As such, custom attribute
implementations can't really use it. This adds the obvious missing
method which fills this hole.
Differential Revision: https://reviews.llvm.org/D110211
Previously, the translation to LLVM IR would emit IR that directly uses
a scope metadata node in case only one scope was in use in alias.scopes
or noalias metadata. It should always be a list of scopes. The verifier
change in 8700f2bd36 enforced this and
broke the test. Fix the translation to always create a list of scopes
using a new metadata node, update and reenable the respective test.
Fixes PR51919.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D110140
Add a PointerProxy similar to the existing iterator_facade_base::ReferenceProxy and return it from the arrow operator. This prevents iterator facades with a reference type that is not a true reference to take the address of a temporary.
Forward the reference type of the mapped_iterator to the iterator adaptor which in turn forwards it to the iterator facade. This fixes mlir::op_iterator::operator->() to take the address of a temporary.
Make some polishing changes to op_iterator and op_filter_iterator.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D109490
Compute the tiled producer slice dimensions directly starting from the consumer not using the producer at all.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D110147
Add a helper method to check if an index vector contains a permutation of its indices. Additionally, refactor applyPermutationToVector to take int64_t.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D110135
It was previously assumed that tensor.insert_slice should be bufferized first in a greedy fashion to avoid out-of-place bufferization of the large tensor. This heuristic does not hold upon further inspection.
This CL removes the special handling of such ops and adds a test that exhibits better behavior and appears in real use cases.
The only test adversely affected is an artificial test which results in a returned memref: this pattern is not allowed by comprehensive bufferization in real scenarios anyway and the offending test is deleted.
Differential Revision: https://reviews.llvm.org/D110072
Previously, comprehensive bufferize would consider all aliasing reads and writes to
the result buffer and matching operand. This resulted in spurious dependences
being considered and resulted in too many unnecessary copies.
Instead, this revision revisits the gathering of read and write alias sets.
This results in fewer alloc and copies.
An exhaustive test cases is added that considers all possible permutations of
`matmul(extract_slice(fill), extract_slice(fill), ...)`.