There is not an official documented ABI for frame pointers in Thumb2,
but we should try to emit something which is useful.
We use r7 as the frame pointer for Thumb code, which currently means
that if a function needs to save a high register (r8-r11), it will get
pushed to the stack between the frame pointer (r7) and link register
(r14). This means that while a stack unwinder can follow the chain of
frame pointers up the stack, it cannot know the offset to lr, so does
not know which functions correspond to the stack frames.
To fix this, we need to push the callee-saved registers in two batches,
with the first push saving the low registers, fp and lr, and the second
push saving the high registers. This is already implemented, but
previously only used for iOS. This patch turns it on for all Thumb2
targets when frame pointers are required by the ABI, and the frame
pointer is r7 (Windows uses r11, so this isn't a problem there). If
frame pointer elimination is enabled we still emit a single push/pop
even if we need a frame pointer for other reasons, to avoid increasing
code size.
We must also ensure that lr is pushed to the stack when using a frame
pointer, so that we end up with a complete frame record. Situations that
could cause this were rare, because we already push lr in most
situations so that we can return using the pop instruction.
Differential Revision: https://reviews.llvm.org/D23516
llvm-svn: 279506
Most of the time ARM has the CCR.UNALIGN_TRP bit set to false which
means that unaligned loads/stores do not trap and even extensive testing
will not catch these bugs. However the multi/double variants are not
affected by this bit and will still trap. In effect a more aggressive
load/store optimization will break existing (bad) code.
These bugs do not necessarily manifest in the broken code where the
misaligned pointer is formed but often later in perfectly legal code
where it is accessed. This means recompiling system libraries (which
have no alignment bugs) with a newer compiler will break existing
applications (with alignment bugs) that worked before.
So (under protest) I implemented this safe mode which limits the
formation of multi/double operations to cases that are not affected by
user code (stack operations like spills/reloads) or cases where the
normal operations trap anyway (floating point load/stores). It is
disabled by default.
Differential Revision: http://reviews.llvm.org/D17015
llvm-svn: 262504
These were the cause of a verifier error when building 7zip with
-verify-machineinstrs. Running 'make check' with the verifier
triggered the same error on the test here so i've updated the test
to run the verifier on one of its runs instead of adding a new one.
While looking at this code, there was a stale comment that these
instructions were only used for disassembly. This probably used to
be the case, but they are now used in the 'ARM load / store optimization pass' too.
This reapplies r242300 which was reverted in r242428 due to bot failures.
Ultimately those failures were spurious and completely unrelated to this commit. I reverted this
at the time because it was thought to be at fault.
llvm-svn: 250969
Re-apply of r241928 which had to be reverted because of the r241926
revert.
This commit factors out common code from MergeBaseUpdateLoadStore() and
MergeBaseUpdateLSMultiple() and introduces a new function
MergeBaseUpdateLSDouble() which merges adds/subs preceding/following a
strd/ldrd instruction into an strd/ldrd instruction with writeback where
possible.
Differential Revision: http://reviews.llvm.org/D10676
llvm-svn: 242743
Re-apply r241926 with an additional check that r13 and r15 are not used
for LDRD/STRD. See http://llvm.org/PR24190. This also already includes
the fix from r241951.
Differential Revision: http://reviews.llvm.org/D10623
llvm-svn: 242742
This reverts commit r242300.
This is causing buildbot failures which we are investigating.
I'll reapply once we know whats going on, but for now want to
get the bots green.
llvm-svn: 242428
These were the cause of a verifier error when building 7zip with
-verify-machineinstrs. Running 'make check' with the verifier
triggered the same error on the test here so i've updated the test
to run the verifier on one of its runs instead of adding a new one.
While looking at this code, there was a stale comment that these
instructions were only used for disassembly. This probably used to
be the case, but they are now used in the 'ARM load / store optimization pass' too.
llvm-svn: 242300
This commit factors out common code from MergeBaseUpdateLoadStore() and
MergeBaseUpdateLSMultiple() and introduces a new function
MergeBaseUpdateLSDouble() which merges adds/subs preceding/following a
strd/ldrd instruction into an strd/ldrd instruction with writeback where
possible.
Differential Revision: http://reviews.llvm.org/D10676
llvm-svn: 241928
The existing code would unnecessarily break LDRD/STRD apart with
non-adjacent registers, on thumb2 this is not necessary.
Ideally on thumb2 we shouldn't match for ldrd/strd pre-regalloc anymore
as there is not reason to set register hints anymore, changing that is
something for a future patch however.
Differential Revision: http://reviews.llvm.org/D9694
Recommiting after the revert in r238821, the buildbot still failed with
the patch removed so there seems to be another reason for the breakage.
llvm-svn: 238935
This reverts commit r238795, as it broke the Thumb2 self-hosting buildbot.
Since self-hosting issues with Clang are hard to investigate, I'm taking the
liberty to revert now, so we can investigate it offline.
llvm-svn: 238821
The existing code would unnecessarily break LDRD/STRD apart with
non-adjacent registers, on thumb2 this is not necessary.
Ideally on thumb2 we shouldn't match for ldrd/strd pre-regalloc anymore
as there is not reason to set register hints anymore, changing that is
something for a future patch however.
Differential Revision: http://reviews.llvm.org/D9694
llvm-svn: 238795
Similar to gep (r230786) and load (r230794) changes.
Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.
(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)
import fileinput
import sys
import re
rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)
def conv(match):
line = match.group(1)
line += match.group(4)
line += ", "
line += match.group(2)
return line
line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
sys.stdout.write(line[off:match.start()])
sys.stdout.write(conv(match))
off = match.end()
sys.stdout.write(line[off:])
llvm-svn: 232184
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
This update was done with the following bash script:
find test/CodeGen -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc.*debug" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_-]*\):\( *\)$FUNC: *\$/;\1\2-LABEL:\3$FUNC:/g" $TEMP
done
sed -i '' "s/;\(.*\)-LABEL-LABEL:/;\1-LABEL:/" $TEMP
sed -i '' "s/;\(.*\)-NEXT-LABEL:/;\1-NEXT:/" $TEMP
sed -i '' "s/;\(.*\)-NOT-LABEL:/;\1-NOT:/" $TEMP
sed -i '' "s/;\(.*\)-DAG-LABEL:/;\1-DAG:/" $TEMP
mv $TEMP $NAME
fi
done
llvm-svn: 186280
it at the moment.
This allows to form more paired loads even when stack coloring pass destroys the
memoryoperand's value.
<rdar://problem/13978317>
llvm-svn: 184492
The fast register allocator is not supposed to work in the optimizing
pipeline. It doesn't make sense to compute live intervals, run full copy
coalescing, and then run RAFast.
Fast register allocation in the optimizing pipeline is better done by
RABasic.
llvm-svn: 158242
Allow LDRD to be formed from pairs with different LDR encodings. This was the original intention of the pass. Somewhere along the way, the LDR opcodes were refined which broke the optimization. We really don't care what the original opcodes are as long as they both map to the same LDRD and the immediate still fits.
Fixes rdar://10435045 ARMLoadStoreOptimization cannot handle mixed LDRi8/LDRi12
llvm-svn: 147922
instructions to help disassembly.
We also changed the output of the addressing modes to omit the '+' from the
assembler syntax #+/-<imm> or +/-<Rm>. See, for example, A8.6.57/58/60.
And modified test cases to not expect '+' in +reg or #+num. For example,
; CHECK: ldr.w r9, [r7, #28]
llvm-svn: 98745
U test/CodeGen/ARM/tls2.ll
U test/CodeGen/ARM/arm-negative-stride.ll
U test/CodeGen/ARM/2009-10-30.ll
U test/CodeGen/ARM/globals.ll
U test/CodeGen/ARM/str_pre-2.ll
U test/CodeGen/ARM/ldrd.ll
U test/CodeGen/ARM/2009-10-27-double-align.ll
U test/CodeGen/Thumb2/thumb2-strb.ll
U test/CodeGen/Thumb2/ldr-str-imm12.ll
U test/CodeGen/Thumb2/thumb2-strh.ll
U test/CodeGen/Thumb2/thumb2-ldr.ll
U test/CodeGen/Thumb2/thumb2-str_pre.ll
U test/CodeGen/Thumb2/thumb2-str.ll
U test/CodeGen/Thumb2/thumb2-ldrh.ll
U utils/TableGen/TableGen.cpp
U utils/TableGen/DisassemblerEmitter.cpp
D utils/TableGen/RISCDisassemblerEmitter.h
D utils/TableGen/RISCDisassemblerEmitter.cpp
U Makefile.rules
U lib/Target/ARM/ARMInstrNEON.td
U lib/Target/ARM/Makefile
U lib/Target/ARM/AsmPrinter/ARMInstPrinter.cpp
U lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp
U lib/Target/ARM/AsmPrinter/ARMInstPrinter.h
D lib/Target/ARM/Disassembler
U lib/Target/ARM/ARMInstrFormats.td
U lib/Target/ARM/ARMAddressingModes.h
U lib/Target/ARM/Thumb2ITBlockPass.cpp
llvm-svn: 98640
(RISCDisassemblerEmitter) which emits the decoder functions for ARM and Thumb,
and the disassembler core which invokes the decoder function and builds up the
MCInst based on the decoded Opcode.
Added sub-formats to the NeonI/NeonXI instructions to further refine the NEONFrm
instructions to help disassembly.
We also changed the output of the addressing modes to omit the '+' from the
assembler syntax #+/-<imm> or +/-<Rm>. See, for example, A8.6.57/58/60.
And modified test cases to not expect '+' in +reg or #+num. For example,
; CHECK: ldr.w r9, [r7, #28]
llvm-svn: 98637
- Change register allocation hint to a pair of unsigned integers. The hint type is zero (which means prefer the register specified as second part of the pair) or entirely target dependent.
- Allow targets to specify alternative register allocation orders based on allocation hint.
Part 2.
- Use the register allocation hint system to implement more aggressive load / store multiple formation.
- Aggressively form LDRD / STRD. These are formed *before* register allocation. It has to be done this way to shorten live interval of base and offset registers. e.g.
v1025 = LDR v1024, 0
v1026 = LDR v1024, 0
=>
v1025,v1026 = LDRD v1024, 0
If this transformation isn't done before allocation, v1024 will overlap v1025 which means it more difficult to allocate a register pair.
- Even with the register allocation hint, it may not be possible to get the desired allocation. In that case, the post-allocation load / store multiple pass must fix the ldrd / strd instructions. They can either become ldm / stm instructions or back to a pair of ldr / str instructions.
This is work in progress, not yet enabled.
llvm-svn: 73381