operator+, directly, using the same mechanism as all other special
names.
Removed the "special" identifiers for the overloaded operators from
the identifier table and IdentifierInfo data structure. IdentifierInfo
is back to representing only real identifiers.
Added a new Action, ActOnOperatorFunctionIdExpr, that builds an
expression from an parsed operator-function-id (e.g., "operator
+"). ActOnIdentifierExpr used to do this job, but
operator-function-ids are no longer represented by IdentifierInfo's.
Extended Declarator to store overloaded operator names.
Sema::GetNameForDeclarator now knows how to turn the operator
name into a DeclarationName for the overloaded operator.
Except for (perhaps) consolidating the functionality of
ActOnIdentifier, ActOnOperatorFunctionIdExpr, and
ActOnConversionFunctionExpr into a common routine that builds an
appropriate DeclRefExpr by looking up a DeclarationName, all of the
work on normalizing declaration names should be complete with this
commit.
llvm-svn: 59526
and let the clients push whatever they want into the DiagnosticInfo
instead of hard coding a few forms. Also switch various clients to
use Diag(Tok, ...) instead of Diag(Tok.getLocation(), ...) as the
canonical form to simplify the code a bit.
llvm-svn: 59509
C++ constructors, destructors, and conversion functions now have a
FETokenInfo field that IdentifierResolver can access, so that these
special names are handled just like ordinary identifiers. A few other
Sema routines now use DeclarationNames instead of IdentifierInfo*'s.
To validate this design, this code also implements parsing and
semantic analysis for id-expressions that name conversion functions,
e.g.,
return operator bool();
The new parser action ActOnConversionFunctionExpr takes the result of
parsing "operator type-id" and turning it into an expression, using
the IdentifierResolver with the DeclarationName of the conversion
function. ActOnDeclarator pushes those conversion function names into
scope so that the IdentifierResolver can find them, of course.
llvm-svn: 59462
functions in C++, e.g.,
struct X {
operator bool() const;
};
Note that these conversions don't actually do anything, since we don't
yet have the ability to use them for implicit or explicit conversions.
llvm-svn: 58860
operators in C++. Overloaded operators can be called directly via
their operator-function-ids, e.g., "operator+(foo, bar)", but we don't
yet implement the semantics of operator overloading to handle, e.g.,
"foo + bar".
llvm-svn: 58817
- CastExpr is the root of all casts
- ImplicitCastExpr is (still) used for all explicit casts
- ExplicitCastExpr is now the root of all *explicit* casts
- ExplicitCCastExpr (new name needed!?) is a C-style cast in C or C++
- CXXFunctionalCastExpr inherits from ExplicitCastExpr
- CXXNamedCastExpr inherits from ExplicitCastExpr and is the root of all
of the C++ named cast expression types (static_cast, dynamic_cast, etc.)
- Added classes CXXStaticCastExpr, CXXDynamicCastExpr,
CXXReinterpretCastExpr, and CXXConstCastExpr to
Also, fixed returned-stack-addr.cpp, which broke once when we fixed
reinterpret_cast to diagnose double->int* conversions and again when
we eliminated implicit conversions to reference types. The fix is in
both testcase and SemaChecking.cpp.
Most of this patch is simply support for the renaming. There's very
little actual change in semantics.
llvm-svn: 58264
-The Parser calls a new "ActOnCXXTypeConstructExpr" action.
-Sema, depending on the type and expressions number:
-If the type is a class, it will treat it as a class constructor. [TODO]
-If there's only one expression (i.e. "int(0.5)" ), creates a new "CXXFunctionalCastExpr" Expr node
-If there are no expressions (i.e "int()" ), creates a new "CXXZeroInitValueExpr" Expr node.
llvm-svn: 55177
Note that Parser::ParseCXXMemberSpecification is temporarily disabled until the Sema support is in place.
Once ParseCXXMemberSpecification is enabled, the Parser/cxx-class.cpp test will pass.
llvm-svn: 52694
lib dir and move all the libraries into it. This follows the main
llvm tree, and allows the libraries to be built in parallel. The
top level now enforces that all the libs are built before Driver,
but we don't care what order the libs are built in. This speeds
up parallel builds, particularly incremental ones.
llvm-svn: 48402