manager proxies and use those rather than repeating their definition
four times.
There are real differences between the two directions: outer AMs are
const and don't need to have invalidation tracked. But every proxy in
a particular direction is identical except for the analysis manager type
and the IR unit they proxy into. This makes them prime candidates for
nice templates.
I've started introducing explicit template instantiation declarations
and definitions as well because we really shouldn't be emitting all this
everywhere. I'm going to go back and add the same for the other
templates like this in a follow-up patch.
I've left the analysis manager as an opaque type rather than using two
IR units and requiring it to be an AnalysisManager template
specialization. I think its important that users retain the ability to
provide their own custom analysis management layer and provided it has
the appropriate API everything should Just Work.
llvm-svn: 262127
Most of this is fairly straight forward. Add handling for min/max via existing matcher utility and ConstantRange routines. Add handling for clamp by exploiting condition constraints on inputs.
Note that I'm only handling two constant ranges at this point. It would be reasonable to consider treating overdefined as a full range if the instruction is typed as an integer, but that should be a separate change.
Differential Revision: http://reviews.llvm.org/D17184
llvm-svn: 262085
analyses in the new pass manager.
These just handle really basic stuff: turning a type name into a string
statically that is nice to print in logs, and getting a static unique ID
for each analysis.
Sadly, the format of passes in anonymous namespaces makes using their
names in tests really annoying so I've customized the names of the no-op
passes to keep tests sane to read.
This is the first of a few simplifying refactorings for the new pass
manager that should reduce boilerplate and confusion.
llvm-svn: 262004
Summary: Check that we're using SCEV for the same loop we're simulating. Otherwise, we might try to use the iteration number of the current loop in SCEV expressions for inner/outer loops IVs, which is clearly incorrect.
Reviewers: chandlerc, hfinkel
Subscribers: sanjoy, llvm-commits, mzolotukhin
Differential Revision: http://reviews.llvm.org/D17632
llvm-svn: 261958
This creates the new-style LoopPassManager and wires it up with dummy
and print passes.
This version doesn't support modifying the loop nest at all. It will
be far easier to discuss and evaluate the approaches to that with this
in place so that the boilerplate is out of the way.
llvm-svn: 261831
This is a part of the refactoring to unify isSafeToLoadUnconditionally and isDereferenceablePointer functions. In subsequent change I'm going to eliminate isDerferenceableAndAlignedPointer from Loads API, leaving isSafeToLoadSpecualtively the only function to check is load instruction can be speculated.
Reviewed By: hfinkel
Differential Revision: http://reviews.llvm.org/D16180
llvm-svn: 261736
pattern that triggers it. This essentially requires an immutable
function analysis, as that will survive anything we do to invalidate it.
When we have such patterns, the function analysis manager will not get
cleared between runs of the proxy.
If we actually need an assert about how things are queried, we can add
more elaborate machinery for computing it, but so far I'm not aware of
significant value provided.
Thanks to Justin Lebar for noticing this when he made a (seemingly
innocuous) change to FunctionAttrs that is enough to trigger it in one
test there. Now it is covered by a direct test of the pass manager code.
llvm-svn: 261627
These are really handles that ensure the analyses get cleared at
appropriate places, and as such copying doesn't really make sense.
Instead, they should look more like unique ownership objects. Make that
the case.
Relatedly, if you create a temporary of one and move out of it
its destructor shouldn't actually clear anything. I don't think there is
any code that can trigger this currently, but it seems like a more
robust implementation.
If folks want, I can add a unittest that forces this to be exercised,
but that seems somewhat pointless -- whether a temporary is ever created
in the innards of AnalysisManager is not really something we should be
adding a reliance on, but I didn't want to leave a timebomb in the code
here.
If anyone has a cleaner way to represent this, I'm all ears, but
I wanted to assure myself that this wasn't in fact responsible for
another bug I'm chasing down (it wasn't) and figured I'd commit that.
llvm-svn: 261594
Rename makeNoWrapRegion to a more obvious makeGuaranteedNoWrapRegion,
and add a comment about the counter-intuitive aspects of the function.
This is to help prevent cases like PR26628.
llvm-svn: 261532
I missed == and != when I removed implicit conversions between iterators
and pointers in r252380 since they were defined outside ilist_iterator.
Since they depend on getNodePtrUnchecked(), they indirectly rely on UB.
This commit removes all uses of these operators. (I'll delete the
operators themselves in a separate commit so that it can be easily
reverted if necessary.)
There should be NFC here.
llvm-svn: 261498
Before this patch simplified SCEV expressions for PHI nodes were only returned
the very first time getSCEV() was called, but later calls to getSCEV always
returned the non-simplified value, which had "temporarily" been stored in the
ValueExprMap, but was never removed and consequently blocked the caching of the
simplified PHI expression.
llvm-svn: 261485
the algorithm easily degrades into quadratic memory and time complexity.
The easiest example is a long chain of BBs that don't otherwise use a
location. The caching will add an entry for every intermediate block and
limiting the number of results doesn't help as no results are produced
until a definition is found.
Introduce a limit similar to the existing instructions-per-block limit.
This limit counts the total number of blocks checked. If the limit is
reached, entries are considered unknown. The initial value is 1000,
which avoids regressions for normal sized functions while still
limiting edge cases to reasnable memory consumption and execution time.
Differential Revision: http://reviews.llvm.org/D16123
llvm-svn: 261430
No functional change intended. Copying small (<= 64 bits) APInts isn't
expensive but bloats code by generating the slow path everywhere. Moving
doesn't care about the size of the value.
llvm-svn: 261426
it to actually test the new pass manager AA wiring.
This patch was extracted from the (somewhat too large) D12357 and
rebosed on top of the slightly different design of the new pass manager
AA wiring that I just landed. With this we can start testing the AA in
a thorough way with the new pass manager.
Some minor cleanups to the code in the pass was necessitated here, but
otherwise it is a very minimal change.
Differential Revision: http://reviews.llvm.org/D17372
llvm-svn: 261403
These atomic operations are conceptually both a load and store from the same location. As such, we can treat them as the most conservative of those two components which in practice, means we can treat them like stores. An cmpxchg or atomicrmw captures the values, but not the locations accessed.
Note: We can probably be more aggressive about the comparison value in an cmpxhg since to have it be in memory, it must already be captured, but I figured it was better to avoid that for the moment.
Note 2: It turns out that since we don't actually support cmpxchg of pointer type, writing a negative test is impossible.
Differential Revision: http://reviews.llvm.org/D17400
llvm-svn: 261245
reference-edge SCCs.
This essentially builds a more normal call graph as a subgraph of the
"reference graph" that was the old model. This allows both to exist and
the different use cases to use the aspect which addresses their needs.
Specifically, the pass manager and other *ordering* constrained logic
can use the reference graph to achieve conservative order of visit,
while analyses reasoning about attributes and other properties derived
from reachability can reason about the direct call graph.
Note that this isn't necessarily complete: it doesn't model edges to
declarations or indirect calls. Those can be found by scanning the
instructions of the function if desirable, and in fact every user
currently does this in order to handle things like calls to instrinsics.
If useful, we could consider caching this information in the call graph
to save the instruction scans, but currently that doesn't seem to be
important.
An important realization for why the representation chosen here works is
that the call graph is a formal subset of the reference graph and thus
both can live within the same data structure. All SCCs of the call graph
are necessarily contained within an SCC of the reference graph, etc.
The design is to build 'RefSCC's to model SCCs of the reference graph,
and then within them more literal SCCs for the call graph.
The formation of actual call edge SCCs is not done lazily, unlike
reference edge 'RefSCC's. Instead, once a reference SCC is formed, it
directly builds the call SCCs within it and stores them in a post-order
sequence. This is used to provide a consistent platform for mutation and
update of the graph. The post-order also allows for very efficient
updates in common cases by bounding the number of nodes (and thus edges)
considered.
There is considerable common code that I'm still looking for the best
way to factor out between the various DFS implementations here. So far,
my attempts have made the code harder to read and understand despite
reducing the duplication, which seems a poor tradeoff. I've not given up
on figuring out the right way to do this, but I wanted to wait until
I at least had the system working and tested to continue attempting to
factor it differently.
This also requires introducing several new algorithms in order to handle
all of the incremental update scenarios for the more complex structure
involving two edge colorings. I've tried to comment the algorithms
sufficiently to make it clear how this is expected to work, but they may
still need more extensive documentation.
I know that there are some changes which are not strictly necessarily
coupled here. The process of developing this started out with a very
focused set of changes for the new structure of the graph and
algorithms, but subsequent changes to bring the APIs and code into
consistent and understandable patterns also ended up touching on other
aspects. There was no good way to separate these out without causing
*massive* merge conflicts. Ultimately, to a large degree this is
a rewrite of most of the core algorithms in the LCG class and so I don't
think it really matters much.
Many thanks to the careful review by Sanjoy Das!
Differential Revision: http://reviews.llvm.org/D16802
llvm-svn: 261040
The root issue appears to be a confusion around what makeNoWrapRegion actually does. It seems likely we need two versions of this function with slightly different semantics.
llvm-svn: 260981
Summary:
Extending findExistingExpansion can use existing value in ExprValueMap.
This patch gives 0.3~0.5% performance improvements on
benchmarks(test-suite, spec2000, spec2006, commercial benchmark)
Reviewers: mzolotukhin, sanjoy, zzheng
Differential Revision: http://reviews.llvm.org/D15559
llvm-svn: 260938
into the new pass manager and fix the latent bugs there.
This lets everything live together nicely, but it isn't really useful
yet. I never finished wiring the AA layer up for the new pass manager,
and so subsequent patches will change this to do that wiring and get AA
stuff more fully integrated into the new pass manager. Turns out this is
necessary even to get functionattrs ported over. =]
llvm-svn: 260836
As the title says. Modelled after similar code in SCEV.
This is useful when analysing induction variables in loops which have been canonicalized by other passes. I wrote the tests as non-loops specifically to avoid the generality introduced in http://reviews.llvm.org/D17174. While that can handle many induction variables without *needing* to exploit nsw, there's no reason not to use it if we've already proven it.
Differential Revision: http://reviews.llvm.org/D17177
llvm-svn: 260705
This patches teaches LVI to recognize clamp idioms (e.g. select(a > 5, a, 5) will always produce something greater than 5.
The tests end up being somewhat simplistic because trying to exercise the case I actually care about (a loop with a range check on a clamped secondary induction variable) ends up tripping across a couple of other imprecisions in the analysis. Ah, the joys of LVI...
Differential Revision: http://reviews.llvm.org/D16827
llvm-svn: 260627
This is a part of the refactoring to unify isSafeToLoadUnconditionally and isDereferenceablePointer functions. In the subsequent change isSafeToSpeculativelyExecute will be modified to use isSafeToLoadUnconditionally instead of isDereferenceableAndAlignedPointer.
Reviewed By: reames
Differential Revision: http://reviews.llvm.org/D16227
llvm-svn: 260520
There's nothing preventing callers of LVI from asking for lattice values representing a Constant. In fact, given that several callers are walking back through PHI nodes and trying to simplify predicates, such queries are actually quite common. This is mostly harmless today, but we start volatiling assertions if we add new calls to getBlockValue in otherwise reasonable places.
Note that this change is not NFC. Specifically:
1) The result returned through getValueAt will now be more precise. In principle, this could trigger any latent infinite optimization loops in callers, but in practice, we're unlikely to see this.
2) The result returned through getBlockValueAt is potentially weakened for non-constants that were previously queried. With the old code, you had the possibility that a later query might bypass the cache and discover some information the original query did not. I can't find a scenario which actually causes this to happen, but it was in principle possible. On the other hand, this may end up reducing compile time when the same value is queried repeatedly.
llvm-svn: 260439
Summary:
`hasNoAliasAttr` is buggy: it checks to see if the called function has
a `noalias` attribute, which is incorrect since functions are not even
allowed to have the `noalias` attribute. The comment on its only
caller, `llvm::isNoAliasFn`, makes it pretty clear that the intention
to do the `noalias` check on the return value, and not the callee.
Unfortunately I couldn't find a way to test this upstream -- fixing
this does not change the observable behavior of any of the passes that
use this. This is not very surprising, since `noalias` does not tell
anything about the contents of the allocated memory (so, e.g., you
still cannot fold loads). I'll be happy to be proven wrong though.
Reviewers: chandlerc, reames
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D17037
llvm-svn: 260298
In general, memory restrictions on a called function (e.g. readnone)
cannot be transferred to a CallSite that has operand bundles. It is
possible to make this inference smarter, but lets fix the behavior to be
correct first.
llvm-svn: 260193
Summary:
Passes that call `getAnalysisIfAvailable<T>` also need to call
`addUsedIfAvailable<T>` in `getAnalysisUsage` to indicate to the
legacy pass manager that it uses `T`. This contract was being
violated by passes that used `createLegacyPMAAResults`. This change
fixes this by exposing a helper in AliasAnalysis.h,
`addUsedAAAnalyses`, that is complementary to createLegacyPMAAResults
and does the right thing when called from `getAnalysisUsage`.
Reviewers: chandlerc
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D17010
llvm-svn: 260183
Summary:
createLegacyPMAAResults is only called by CGSCC and Module passes, so
the call to getAnalysisIfAvailable<SCEVAAWrapperPass>() never
succeeds (SCEVAAWrapperPass is a function pass).
Reviewers: chandlerc
Subscribers: mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D17009
llvm-svn: 260182
IndVarSimplify assumes scAddRecExpr to be expanded in literal form instead of
canonical form by calling disableCanonicalMode after it creates SCEVExpander.
When CanonicalMode is disabled, SCEVExpander::expand should always return PHI
node for scAddRecExpr. r259736 broke the assumption.
The fix is to let SCEVExpander::expand skip the reuse Value logic if
CanonicalMode is false.
In addition, Besides IndVarSimplify, LSR pass also calls disableCanonicalMode
before doing rewrite. We can remove the original check of LSRMode in reuse
Value logic and use CanonicalMode instead.
llvm-svn: 260174
Summary:
Unrolling Analyzer is already pretty complicated, and it becomes harder and harder to exercise it with usual IR tests, as with them we can only check the final decision: whether the loop is unrolled or not. This change factors this framework out from LoopUnrollPass to analyses, which allows to use unit tests.
The change itself is supposed to be NFC, except adding a couple of tests.
I plan to add more tests as I add new functionality and find/fix bugs.
Reviewers: chandlerc, hfinkel, sanjoy
Subscribers: zzheng, sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D16623
llvm-svn: 260169
sanitizer issue. The PredicatedScalarEvolution's copy constructor
wasn't copying the Generation value, and was leaving it un-initialized.
Original commit message:
[SCEV][LAA] Add no wrap SCEV predicates and use use them to improve strided pointer detection
Summary:
This change adds no wrap SCEV predicates with:
- support for runtime checking
- support for expression rewriting:
(sext ({x,+,y}) -> {sext(x),+,sext(y)}
(zext ({x,+,y}) -> {zext(x),+,sext(y)}
Note that we are sign extending the increment of the SCEV, even for
the zext case. This is needed to cover the fairly common case where y would
be a (small) negative integer. In order to do this, this change adds two new
flags: nusw and nssw that are applicable to AddRecExprs and permit the
transformations above.
We also change isStridedPtr in LAA to be able to make use of
these predicates. With this feature we should now always be able to
work around overflow issues in the dependence analysis.
Reviewers: mzolotukhin, sanjoy, anemet
Subscribers: mzolotukhin, sanjoy, llvm-commits, rengolin, jmolloy, hfinkel
Differential Revision: http://reviews.llvm.org/D15412
llvm-svn: 260112