The ELF symbol table always contain the size of the symbols so we
don't have to try to guess them based on the address of the next
symbol (it is needed for mach-o).
The change fixes an issue when a symbol is removed after a 0 size
symbol (e.g. because the second one is not public) what previously
caused the symbol lookup algorithm to end up with showing the 0 size
symbol even for the later addresses (what are not part of any symbol).
That symbol lookup error can confuse the user and also confuses the
current stack unwinder.
Differential revision: http://reviews.llvm.org/D16186
llvm-svn: 258040
This API is currently a no-op (in the sense that it has the same behavior as the already existing GetName()), but is meant long-term to provide a best-for-visualization version of the name of a function
It is still not hooked up to the command line 'bt' command, nor to the 'gui' mode, but I do have ideas on how to make that work going forward
rdar://21203242
llvm-svn: 241482
A few extras were fixed
- Symbol::GetAddress() now returns an Address object, not a reference. There were places where people were accessing the address of a symbol when the symbol's value wasn't an address symbol. On MacOSX, undefined symbols have a value zero and some places where using the symbol's address and getting an absolute address of zero (since an Address object with no section and an m_offset whose value isn't LLDB_INVALID_ADDRESS is considered an absolute address). So fixing this required some changes to make sure people were getting what they expected.
- Since some places want to access the address as a reference, I added a few new functions to symbol:
Address &Symbol::GetAddressRef();
const Address &Symbol::GetAddressRef() const;
Linux test suite passes just fine now.
<rdar://problem/21494354>
llvm-svn: 240702
Summary:
Symbols in ELF files can be versioned, but LLDB currently does not understand these. This problem
becomes apparent once one loads glibc with debug info. Here (in the .symtab section) the versions
are embedded in the name (name@VERSION), which causes issues when evaluating expressions
referencing memcpy for example (current glibc contains memcpy@@GLIBC_2.14 and
memcpy@GLIBC_2.2.5).
This problem was not evident without debug symbols as the .dynsym section
stores the bare names and the actual versions are present in a separate section (.gnu.version_d),
which LLDB ignores. This resulted in two definitions of memcpy in the symbol table.
This patch adds support for storing annotated names to the Symbol class. If
Symbol.m_contains_linker_annotations is true then this symbol is annotated. Unannotated name can
be obtained by calling StripLinkerAnnotations on the corresponding ObjectFile. ObjectFileELF
implements this to strip @VERSION suffixes when requested. Symtab uses this function to add the
bare name as well as the annotated name to the name lookup table.
To preserve the size of the Symbol class, I had to steal one bit from the m_type field.
Test Plan:
This fixes TestExprHelpExamples.py when run with a glibc with debug symbols. Writing
an environment agnostic test case would require building a custom shared library with symbol
versions and testing symbol resolution against that, which is somewhat challenging.
Reviewers: clayborg, jingham
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D8036
llvm-svn: 231228
When we have a debug map we have an executable with a bunch of STAB symbols and each source file has a N_SO symbol which scopes a bunch of symbols inside of it. We can use this to our advantage here when looking for the complete definition of an objective C class by looking for a symbol whose name matches the class name and whose type is eSymbolTypeObjCClass. If we find one, that symbol will be contained within a N_SO symbol. This symbol gets turned into a symbol whose type is eSymbolTypeSourceFile and that symbol will contain the eSymbolTypeObjCClass which helps us to locate the correct .o file and allows us to only look in that file.
To further accelerate things, if we are looking for the implementation, we can avoid looking at all .o files if we don't find a matching symbol because we have a debug map, which means the objective C symbol for the class can't have been stripped, so we can safely not search all remaining .o files. This will save us lots of time when trying to look for "NSObject" and any other AppKit and Foundation classes that we never have implementation definitions for.
<rdar://problem/19234225>
llvm-svn: 230562
of the symbol itself rather than forcing clients to do
it. This simplifies the logic for the expression
parser a great deal.
<rdar://problem/16935324>
llvm-svn: 209494
The many many benefits include:
1 - Input/Output/Error streams are now handled as real streams not a push style input
2 - auto completion in python embedded interpreter
3 - multi-line input for "script" and "expression" commands now allow you to edit previous/next lines using up and down arrow keys and this makes multi-line input actually a viable thing to use
4 - it is now possible to use curses to drive LLDB (please try the "gui" command)
We will need to deal with and fix any buildbot failures and tests and arise now that input/output and error are correctly hooked up in all cases.
llvm-svn: 200263
Fixed an issue with reexported symbols on MacOSX by adding support for symbols re-exporting symbols. There is now a new symbol type eSymbolTypeReExported which contains a new name for the re-exported symbol and the new shared library. These symbols are only used when a symbol is re-exported as a symbol under a different name.
Modified the expression parser to be able to deal with finding the re-exported symbols and track down the actual symbol it refers to.
llvm-svn: 193101
- ObjectFile::GetSymtab() and ObjectFile::ClearSymtab() no longer takes any flags
- Module coordinates with the object files and contain a unified section list so that object file and symbol file can share sections when they need to, yet contain their own sections.
Other cleanups:
- Fixed Symbol::GetByteSize() to not have the symbol table compute the byte sizes on the fly
- Modified the ObjectFileMachO class to compute symbol sizes all at once efficiently
- Modified the Symtab class to store a file address lookup table for more efficient lookups
- Removed Section::Finalize() and SectionList::Finalize() as they did nothing
- Improved performance of the detection of symbol files that have debug maps by excluding stripped files and core files, debug files, object files and stubs
- Added the ability to tell if an ObjectFile has been stripped with ObjectFile::IsStripped() (used this for the above performance improvement)
llvm-svn: 185990
The script was able to point out and save 40 bytes in each lldb_private::Section by being very careful where we need to have virtual destructors and also by re-ordering members.
llvm-svn: 184364
- Do not add symbols with no names
- Make sure that symbols from ELF symbol tables know that the byte size is correct. Previously the symbols would calculate their sizes by looking for the next symbol and take symbols that had zero size and make them have invalid sizes.
- Added the ability to dump raw ELF symbols by adding a Dump method to ELFSymbol
Also removed some unused code from lldb_private::Symtab.
llvm-svn: 179466
Major fixed to allow reading files that are over 4GB. The main problems were that the DataExtractor was using 32 bit offsets as a data cursor, and since we mmap all of our object files we could run into cases where if we had a very large core file that was over 4GB, we were running into the 4GB boundary.
So I defined a new "lldb::offset_t" which should be used for all file offsets.
After making this change, I enabled warnings for data loss and for enexpected implicit conversions temporarily and found a ton of things that I fixed.
Any functions that take an index internally, should use "size_t" for any indexes and also should return "size_t" for any sizes of collections.
llvm-svn: 173463
Allow the expression parser to see more than just data symbols. We now accept any symbol that has an address. We take precautions to only accept symbols by their mangled or demangled names only if the demangled name was not synthesized. If the demangled name is synthesized, then we now mark symbols accordingly and only compare against the mangled original name.
llvm-svn: 168668
Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes:
- Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file".
- modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly
- Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was.
- modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile()
Cleaned up header includes a bit as well.
llvm-svn: 162860
Add "--name" option to "image lookup" that will search both functions and symbols.
Also made all of the output from any of the "image lookup" commands be the same regardless of the lookup type (function name, symbol name, func or symbol, file and line, address, etc). The --verbose or -v option also will expand the results as needed and display things so they look the same.
llvm-svn: 156835
This fix really needed to happen as a previous fix I had submitted for
calculating symbol sizes made many symbols appear to have zero size since
the function that was calculating the symbol size was calling another function
that would cause the calculation to happen again. This resulted in some symbols
having zero size when they shouldn't. This could then cause infinite stack
traces and many other side affects.
llvm-svn: 152244
I started work on being able to add symbol files after a debug session
had started with a new "target symfile add" command and quickly ran into
problems with stale Address objects in breakpoint locations that had
lldb_private::Section pointers into modules that had been removed or
replaced. This also let to grabbing stale modules from those sections.
So I needed to thread harded the Address, Section and related objects.
To do this I modified the ModuleChild class to now require a ModuleSP
on initialization so that a weak reference can created. I also changed
all places that were handing out "Section *" to have them hand out SectionSP.
All ObjectFile, SymbolFile and SymbolVendors were inheriting from ModuleChild
so all of the find plug-in, static creation function and constructors now
require ModuleSP references instead of Module *.
Address objects now have weak references to their sections which can
safely go stale when a module gets destructed.
This checkin doesn't complete the "target symfile add" command, but it
does get us a lot clioser to being able to do such things without a high
risk of crashing or memory corruption.
llvm-svn: 151336
You can now access a frame in a thread using:
lldb.SBThread.frame[int] -> lldb.SBFrame object for a frame in a thread
Where "int" is an integer index. You can also access a list object with all of
the frames using:
lldb.SBThread.frames => list() of lldb.SBFrame objects
All SB objects that give out SBAddress objects have properties named "addr"
lldb.SBInstructionList now has the following convenience accessors for len() and
instruction access using an index:
insts = lldb.frame.function.instructions
for idx in range(len(insts)):
print insts[idx]
Instruction lists can also lookup an isntruction using a lldb.SBAddress as the key:
pc_inst = lldb.frame.function.instructions[lldb.frame.addr]
lldb.SBProcess now exposes:
lldb.SBProcess.is_alive => BOOL Check if a process is exists and is alive
lldb.SBProcess.is_running => BOOL check if a process is running (or stepping):
lldb.SBProcess.is_running => BOOL check if a process is currently stopped or crashed:
lldb.SBProcess.thread[int] => lldb.SBThreads for a given "int" zero based index
lldb.SBProcess.threads => list() containing all lldb.SBThread objects in a process
SBInstruction now exposes:
lldb.SBInstruction.mnemonic => python string for instruction mnemonic
lldb.SBInstruction.operands => python string for instruction operands
lldb.SBInstruction.command => python string for instruction comment
SBModule now exposes:
lldb.SBModule.uuid => uuid.UUID(), an UUID object from the "uuid" python module
lldb.SBModule.symbol[int] => lldb.Symbol, lookup symbol by zero based index
lldb.SBModule.symbol[str] => list() of lldb.Symbol objects that match "str"
lldb.SBModule.symbol[re] => list() of lldb.Symbol objecxts that match the regex
lldb.SBModule.symbols => list() of all symbols in a module
SBAddress objects can now access the current load address with the "lldb.SBAddress.load_addr"
property. The current "lldb.target" will be used to try and resolve the load address.
Load addresses can also be set using this accessor:
addr = lldb.SBAddress()
addd.load_addr = 0x123023
Then you can check the section and offset to see if the address got resolved.
SBTarget now exposes:
lldb.SBTarget.module[int] => lldb.SBModule from zero based module index
lldb.SBTarget.module[str] => lldb.SBModule by basename or fullpath or uuid string
lldb.SBTarget.module[uuid.UUID()] => lldb.SBModule whose UUID matches
lldb.SBTarget.module[re] => list() of lldb.SBModule objects that match the regex
lldb.SBTarget.modules => list() of all lldb.SBModule objects in the target
SBSymbol now exposes:
lldb.SBSymbol.name => python string for demangled symbol name
lldb.SBSymbol.mangled => python string for mangled symbol name or None if there is none
lldb.SBSymbol.type => lldb.eSymbolType enum value
lldb.SBSymbol.addr => SBAddress object that represents the start address for this symbol (if there is one)
lldb.SBSymbol.end_addr => SBAddress for the end address of the symbol (if there is one)
lldb.SBSymbol.prologue_size => pythin int containing The size of the prologue in bytes
lldb.SBSymbol.instructions => SBInstructionList containing all instructions for this symbol
SBFunction now also has these new properties in addition to what is already has:
lldb.SBFunction.addr => SBAddress object that represents the start address for this function
lldb.SBFunction.end_addr => SBAddress for the end address of the function
lldb.SBFunction.instructions => SBInstructionList containing all instructions for this function
SBFrame now exposes the SBAddress for the frame:
lldb.SBFrame.addr => SBAddress which is the section offset address for the current frame PC
These are all in addition to what was already added. Documentation and website
updates coming soon.
llvm-svn: 149489
due to RTTI worries since llvm and clang don't use RTTI, but I was able to
switch back with no issues as far as I can tell. Once the RTTI issue wasn't
an issue, we were looking for a way to properly track weak pointers to objects
to solve some of the threading issues we have been running into which naturally
led us back to std::tr1::weak_ptr. We also wanted the ability to make a shared
pointer from just a pointer, which is also easily solved using the
std::tr1::enable_shared_from_this class.
The main reason for this move back is so we can start properly having weak
references to objects. Currently a lldb_private::Thread class has a refrence
to its parent lldb_private::Process. This doesn't work well when we now hand
out a SBThread object that contains a shared pointer to a lldb_private::Thread
as this SBThread can be held onto by external clients and if they end up
using one of these objects we can easily crash.
So the next task is to start adopting std::tr1::weak_ptr where ever it makes
sense which we can do with lldb_private::Debugger, lldb_private::Target,
lldb_private::Process, lldb_private::Thread, lldb_private::StackFrame, and
many more objects now that they are no longer using intrusive ref counted
pointer objects (you can't do std::tr1::weak_ptr functionality with intrusive
pointers).
llvm-svn: 149207
object file can correctly make these symbols which will abstract us from the
file format and ABI and we can then ask for the objective C class symbol for
a class and find out which object file it was defined in.
llvm-svn: 145744
This is the actual fix for the above radar where global variables that weren't
initialized were not being shown correctly when leaving the DWARF in the .o
files. Global variables that aren't intialized have symbols in the .o files
that specify they are undefined and external to the .o file, yet document the
size of the variable. This allows the compiler to emit a single copy, but makes
it harder for our DWARF in .o files with the executable having a debug map
because the symbol for the global in the .o file doesn't exist in a section
that we can assign a fixed up linked address to, and also the DWARF contains
an invalid address in the "DW_OP_addr" location (always zero). This means that
the DWARF is incorrect and actually maps all such global varaibles to the
first file address in the .o file which is usually the first function. So we
can fix this in either of two ways: make a new fake section in the .o file
so that we have a file address in the .o file that we can relink, or fix the
the variable as it is created in the .o file DWARF parser and actually give it
the file address from the executable. Each variable contains a
SymbolContextScope, or a single pointer that helps us to recreate where the
variables came from (which module, file, function, etc). This context helps
us to resolve any file addresses that might be in the location description of
the variable by pointing us to which file the file address comes from, so we
can just replace the SymbolContextScope and also fix up the location, which we
would have had to do for the other case as well, and update the file address.
Now globals display correctly.
The above changes made it possible to determine if a variable is a global
or static variable when parsing DWARF. The DWARF emits a DW_TAG_variable tag
for each variable (local, global, or static), yet DWARF provides no way for
us to classify these variables into these categories. We can now detect when
a variable has a simple address expressions as its location and this will help
us classify these correctly.
While making the above changes I also noticed that we had two symbol types:
eSymbolTypeExtern and eSymbolTypeUndefined which mean essentially the same
thing: the symbol is not defined in the current object file. Symbol objects
also have a bit that specifies if a symbol is externally visible, so I got
rid of the eSymbolTypeExtern symbol type and moved all code locations that
used it to use the eSymbolTypeUndefined type.
llvm-svn: 144489
process IDs, and thread IDs, but was mainly needed for for the UserID's for
Types so that DWARF with debug map can work flawlessly. With DWARF in .o files
the type ID was the DIE offset in the DWARF for the .o file which is not
unique across all .o files, so now the SymbolFileDWARFDebugMap class will
make the .o file index part (the high 32 bits) of the unique type identifier
so it can uniquely identify the types.
llvm-svn: 142534
Also reduce the size of the lldb_private::Symbol objects by removing the
lldb_private::Function pointer that was in each symbol. Running Instruments
has shown that when debugging large applications with DWARF in .o files that
lldb_private::Symbol objects are one of the highest users of memory. No one
was using the Symbol::GetFunction() call anyway.
llvm-svn: 140881
contents starting at an offset (2 separate methods). This helps
the scripting interface stay more natural by allowing both from
Python.
Added the ability to dump data with address annotations when
call SBData::GetDescription().
Hooked up the SBSection to the __repr__ so you can print section
objects from within python.
Improved the dumping of symbols from python.
Fixed the .i interface references which were set to "Relative to this Group"
which somehow included Jim's "lldb-clean" root directory in the path. The
interfaces are now in a folder called "interfaces" withing the Xcode API
subfolder.
llvm-svn: 140451
ModuleSP
Module::GetSP();
Since we are now using intrusive ref counts, we can easily turn any
pointer to a module into a shared pointer just by assigning it.
llvm-svn: 139984
cause extra shared pointer references to one or more modules to be leaked.
This would cause many object files to stay around the life of LLDB, so after
a recompile and rexecution, we would keep adding more and more memory. After
fixing the leak, we found many cases where leaked stack frames were still
being used and causing crashes in the test suite. These are now all resolved.
llvm-svn: 137516
They will now be represented as:
eSymbolTypeFunction: eSymbolTypeCode with IsDebug() == true
eSymbolTypeGlobal: eSymbolTypeData with IsDebug() == true and IsExternal() == true
eSymbolTypeStatic: eSymbolTypeData with IsDebug() == true and IsExternal() == false
This simplifies the logic when dealing with symbols and allows for symbols
to be coalesced into a single symbol most of the time.
Enabled the minimal symbol table for mach-o again after working out all the
kinks. We now get nice concise symbol tables and debugging with DWARF in the
.o files with a debug map in the binary works well again. There were issues
where the SymbolFileDWARFDebugMap symbol file parser was using symbol IDs and
symbol indexes interchangeably. Now that all those issues are resolved
debugging is working nicely.
llvm-svn: 113678
cleaning up the output of many GetDescription objects that are part of a
symbol context. This fixes an issue where no ranges were being printed out
for functions, blocks and symbols.
llvm-svn: 113571
documentation. Symbol now inherits from the symbol
context scope so that the StackID can use a "SymbolContextScope *"
instead of a blockID (which could have been the same as some other
blockID from another symbol file).
Modified the stacks that are created on subsequent stops to reuse
the previous stack frame objects which will allow for some internal
optimization using pointer comparisons during stepping.
llvm-svn: 112495
intelligently. The four name types we currently have are:
eFunctionNameTypeFull = (1 << 1), // The function name.
// For C this is the same as just the name of the function
// For C++ this is the demangled version of the mangled name.
// For ObjC this is the full function signature with the + or
// - and the square brackets and the class and selector
eFunctionNameTypeBase = (1 << 2), // The function name only, no namespaces or arguments and no class
// methods or selectors will be searched.
eFunctionNameTypeMethod = (1 << 3), // Find function by method name (C++) with no namespace or arguments
eFunctionNameTypeSelector = (1 << 4) // Find function by selector name (ObjC) names
this allows much more flexibility when setting breakoints:
(lldb) breakpoint set --name main --basename
(lldb) breakpoint set --name main --fullname
(lldb) breakpoint set --name main --method
(lldb) breakpoint set --name main --selector
The default:
(lldb) breakpoint set --name main
will inspect the name "main" and look for any parens, or if the name starts
with "-[" or "+[" and if any are found then a full name search will happen.
Else a basename search will be the default.
Fixed some command option structures so not all options are required when they
shouldn't be.
Cleaned up the breakpoint output summary.
Made the "image lookup --address <addr>" output much more verbose so it shows
all the important symbol context results. Added a GetDescription method to
many of the SymbolContext objects for the more verbose output.
llvm-svn: 107075