This adds support for allowing v8f16 vector types, thus avoiding conversions
from/to single precision for these types. This is a follow up patch of
commits r311154 and r312104, which added support for scalars and v4f16
types, respectively.
Differential Revision: https://reviews.llvm.org/D37802
llvm-svn: 313351
Summary:
1/ Operand folding during complex pattern matching for LEAs has been
extended, such that it promotes Scale to accommodate similar operand
appearing in the DAG.
e.g.
T1 = A + B
T2 = T1 + 10
T3 = T2 + A
For above DAG rooted at T3, X86AddressMode will no look like
Base = B , Index = A , Scale = 2 , Disp = 10
2/ During OptimizeLEAPass down the pipeline factorization is now performed over LEAs
so that if there is an opportunity then complex LEAs (having 3 operands)
could be factored out.
e.g.
leal 1(%rax,%rcx,1), %rdx
leal 1(%rax,%rcx,2), %rcx
will be factored as following
leal 1(%rax,%rcx,1), %rdx
leal (%rdx,%rcx) , %edx
3/ Aggressive operand folding for AM based selection for LEAs is sensitive to loops,
thus avoiding creation of any complex LEAs within a loop.
Reviewers: lsaba, RKSimon, craig.topper, qcolombet
Reviewed By: lsaba
Subscribers: spatel, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D35014
llvm-svn: 313343
Because the stack growth direction and addressing is done
in the same direction, modifying SP at the beginning of the
call sequence was incorrect. If we had a stack passed argument,
we would end up skipping that number of bytes before pushing
arguments, leaving unused/inconsistent space.
The callee creates fixed stack objects in its frame, so
the space necessary for these is already logically allocated
in the callee, so we just let the callee increment SP if
it really requires it.
llvm-svn: 313279
Using SplitCSR for the frame register was very broken. Often
the copies in the prolog and epilog were optimized out, in addition
to them being inserted after the true prolog where the FP
was clobbered.
I have a hacky solution which works that continues to use
split CSR, but for now this is simpler and will get to working
programs.
llvm-svn: 313274
This patch complements D16810 "[mips] Make isel select the correct DEXT variant
up front.". Now ISel picks the right variant of DINS, so now there is no need
to replace DINS with the appropriate variant during
MipsMCCodeEmitter::encodeInstruction().
This patch also enables target specific instruction verification for ins, dins,
dinsm, dinsu, ext, dext, dextm, dextu. These instructions have constraints that
are checked when generating MipsISD::Ins and MipsISD::Ext nodes, but these
constraints are not checked during instruction selection. Adding machine
verification should catch outstanding cases.
Finally, correct a bug that instruction verification uncovered, where the
position operand of a DINSU generated during lowering was being silently
and accidently corrected to the correct value.
Reviewers: slthakur
Differential Revision: https://reviews.llvm.org/D34809
llvm-svn: 313254
We already have a combine for this pattern when the input to shl is add, so we just need to enable the transformation when the input is or.
Original patch by @tstellar
Differential Revision: https://reviews.llvm.org/D19325
llvm-svn: 313251
Summary:
XRay had been assuming that the previous section is the "text" section
of the function when lowering the instrumentation map. Unfortunately
this is not a safe assumption, because we may be coming from lowering
debug type information for the function being lowered.
This fixes an issue with combining -gsplit-dwarf, -generate-type-units,
-debug-compile and -fxray-instrument for sole member functions. When the
split dwarf section is stripped, we're left with references from the
xray_instr_map to the debug section. The change now uses the function's
symbol instead of the previous section's start symbol.
We found the bug while attempting to strip the split debug sections off
an XRay-instrumented object file, which had a peculiar edge-case for
single-function classes where the single function is being lowered.
Because XRay had assocaited the instrumentation map for a function to
the debug types section instead of the function's section, the objcopy
call will fail due to the misplaced reference from the xray_instr_map
section.
Reviewers: pcc, dblaikie, echristo
Subscribers: llvm-commits, aprantl
Differential Revision: https://reviews.llvm.org/D37791
llvm-svn: 313233
This caused PR34596.
> [MachineCombiner] Update instruction depths incrementally for large BBs.
>
> Summary:
> For large basic blocks with lots of combinable instructions, the
> MachineTraceMetrics computations in MachineCombiner can dominate the compile
> time, as computing the trace information is quadratic in the number of
> instructions in a BB and it's relevant successors/predecessors.
>
> In most cases, knowing the instruction depth should be enough to make
> combination decisions. As we already iterate over all instructions in a basic
> block, the instruction depth can be computed incrementally. This reduces the
> cost of machine-combine drastically in cases where lots of instructions
> are combined. The major drawback is that AFAIK, computing the critical path
> length cannot be done incrementally. Therefore we only compute
> instruction depths incrementally, for basic blocks with more
> instructions than inc_threshold. The -machine-combiner-inc-threshold
> option can be used to set the threshold and allows for easier
> experimenting and checking if using incremental updates for all basic
> blocks has any impact on the performance.
>
> Reviewers: sanjoy, Gerolf, MatzeB, efriedma, fhahn
>
> Reviewed By: fhahn
>
> Subscribers: kiranchandramohan, javed.absar, efriedma, llvm-commits
>
> Differential Revision: https://reviews.llvm.org/D36619
llvm-svn: 313213
MachineScheduler when clustering loads or stores checks if base
pointers point to the same memory. This check is done through
comparison of base registers of two memory instructions. This
works fine when instructions have separate offset operand. If
they require a full calculated pointer such instructions can
never be clustered according to such logic.
Changed shouldClusterMemOps to accept base registers as well and
let it decide what to do about it.
Differential Revision: https://reviews.llvm.org/D37698
llvm-svn: 313208
This is to fix PR34502. After rL311401, the live range of spilled vreg will be
cleared. HoistSpill need to use the live range of the original vreg before splitting
to know the moving range of the spills. The patch saves a copy of live interval for
the spilled vreg inside of HoistSpillHelper.
Differential Revision: https://reviews.llvm.org/D37578
llvm-svn: 313197
NFC.
Replacing -mcpu=skx by -mattr in the run command of the codegen test: avx512-gather-scatter-intrin.ll.
Reviewers: delena
Revision: https://reviews.llvm.org/D37799
llvm-svn: 313144
NFC.
Updating the code gen regression test bmi2-schedule.ll to use the KNL and SKYLAKE prefixes for the run commands that use the knl and Skylake mcpu options.
The fix is in preparation for a large patch of adding all SKL scheduling information.
Reviewers: delena, zvi, RKSimon
Revision: https://reviews.llvm.org/D37796
llvm-svn: 313138
NFC.
Updating the code gen regression test bmi2-schedule.ll to use the KNL and SKYLAKE prefixes for the run commands that use the knl and Skylake mcpu options.
The fix is in preparation for a large patch of adding all SKL scheduling information.
Reviewers: delena, zvi
Revision: https://reviews.llvm.org/D37796
llvm-svn: 313137
Updating codegen test bmi2-schedule.ll to use the SKYLAKE and KNL prefix as preparatipn for an upcoming patch to add all SKL scheduling information.
llvm-svn: 313136
Add explicit mc-encoding checks showing that the AVX512VL ABS intrinsics are actually mapped to EVEX encoding.
This is a pre-commit for a soon to come patch which will lower x86 target specific ABS intrinsics to IR.
Differential Revision: https://reviews.llvm.org/D37688
llvm-svn: 313131
Load with zero-extend and sign-extend from v2i8 to v2i32 is "Legal" since SSE4.1 and may be performed using PMOVZXBD , PMOVSXBD instructions.
llvm-svn: 313121
The masked store instruction only cares about the sign-bit of each mask element,
so the compare s<0 isn't needed.
As noted in PR11210:
https://bugs.llvm.org/show_bug.cgi?id=11210
...fixing this should allow us to eliminate x86-specific masked store intrinsics in IR.
(Although more testing will be needed to confirm that.)
I filed a bug to track improvements for AVX512:
https://bugs.llvm.org/show_bug.cgi?id=34584
Differential Revision: https://reviews.llvm.org/D37446
llvm-svn: 313089
We already support these in tablegen, but we're matching the wrong
operator (libm ftrunc). Fix that.
While there, drop the c++ code, support COPYs of FPR16, and add tests
for the other types.
llvm-svn: 313073
Implementing this pass as a PowerPC specific pass. Branch coalescing utilizes
the analyzeBranch method which currently does not include any implicit operands.
This is not an issue on PPC but must be handled on other targets.
Pass is currently off by default. Enabled via -enable-ppc-branch-coalesce.
Differential Revision : https: // reviews.llvm.org/D32776
llvm-svn: 313061
Recognizing this pattern during DAG combine hides information about the 'and' and the shift from other combines. I think it should be recognized at isel so its as late as possible. But it can't be done with table based isel because you need to be able to look at both immediates. This patch moves it to custom isel in X86ISelDAGToDAG.cpp.
This does break a couple tests in tbm_patterns because we are now emitting an and_flag node or (cmp and, 0) that we dont' recognize yet. We already had this problem for several other TBM patterns so I think this fine and we can address of them together.
I've also fixed a bug where the combine to BEXTR was preventing us from using a trick of zero extending AH to handle extracts of bits 15:8. We might still want to use BEXTR if it enables load folding. But honestly I hope we narrowed the load instead before got to isel.
I think we should probably also support matching BEXTR from (srl/srl (and mask << C), C). But that should be a different patch.
Differential Revision: https://reviews.llvm.org/D37592
llvm-svn: 313054
This was causing PR34045 to fire again.
> This is a preparatory step for D34515 and also is being recommitted as its
> first version caused PR34045.
>
> This change:
> - makes nodes ISD::ADDCARRY and ISD::SUBCARRY legal for i32
> - lowering is done by first converting the boolean value into the carry flag
> using (_, C) ← (ARMISD::ADDC R, -1) and converted back to an integer value
> using (R, _) ← (ARMISD::ADDE 0, 0, C). An ARMISD::ADDE between the two
> operations does the actual addition.
> - for subtraction, given that ISD::SUBCARRY second result is actually a
> borrow, we need to invert the value of the second operand and result before
> and after using ARMISD::SUBE. We need to invert the carry result of
> ARMISD::SUBE to preserve the semantics.
> - given that the generic combiner may lower ISD::ADDCARRY and
> ISD::SUBCARRYinto ISD::UADDO and ISD::USUBO we need to update their lowering
> as well otherwise i64 operations now would require branches. This implies
> updating the corresponding test for unsigned.
> - add new combiner to remove the redundant conversions from/to carry flags
> to/from boolean values (ARMISD::ADDC (ARMISD::ADDE 0, 0, C), -1) → C
> - fixes PR34045
>
> Differential Revision: https://reviews.llvm.org/D35192
Also revert follow-up r313010:
> [ARM] Fix typo when creating ISD::SUB nodes
>
> In D35192, I accidentally introduced a typo when creating ISD::SUB nodes,
> giving them two values instead of one.
>
> This fails when the merge_values combiner finds one of these nodes.
>
> This change fixes PR34564.
>
> Differential Revision: https://reviews.llvm.org/D37690
llvm-svn: 313044
This bit is needed in order for the CalleeSavedRegs list to automatically
include the super registers if all of their subregs are present.
Thanks to Wei Mi for initially indicating this deficiency in the SystemZ
backend.
Review: Ulrich Weigand.
https://bugs.llvm.org/show_bug.cgi?id=34550
llvm-svn: 313023