FriendFunctionDecl, and create instances as appropriate.
The design of FriendFunctionDecl is still somewhat up in the air; you can
befriend arbitrary types of functions --- methods, constructors, etc. ---
and it's not clear that this representation captures that very well.
We'll have a better picture when we start consuming this data in access
control.
llvm-svn: 78653
virtual base primaries and improve the layout of classes with virtual
bases. WIP.
Hey, I've decided I want a change to FileCheck, I need to ensure that
the group is together, nothing in between. Can we change it to check
the match line is from the line immediately following the last matched
line, if the source for the matched line is immediately after the
source for the previously matched line?
// CHECK: 1
// CHECK: 2
// CHECK: 3
// CHECK: 4
// CHECK: 5
// CHECK: 6
would require 1 2 and 3 to be continuous in the output, and 4 5 and 6
to be continuous.
llvm-svn: 78638
Fixes PR4704 problems
Addresses Eli's patch feedback re: ugly cast code
Updates all postfix operators to remove ParenListExprs. While this is awful,
no better solution (say, in the parser) is obvious to me. Better solutions
welcome.
llvm-svn: 78621
1. Passing something that isn't a string used to cause:
"argument to annotate attribute was not a string literal"
make it say "section attribute" instead.
2. Fix the location of the above message to point to the
bad argument instead of the section token.
3. Implement rdar://4341926, by diagnosing invalid section
specifiers in the frontend rather than letting them slip all
the way to the assembler (a QoI win).
An example of #3 is that we used to produce something like this:
/var/folders/n7/n7Yno9ihEm894640nJdSQU+++TI/-Tmp-//ccFPFGtT.s:2:Expected comma after segment-name
/var/folders/n7/n7Yno9ihEm894640nJdSQU+++TI/-Tmp-//ccFPFGtT.s:2:Rest of line ignored. 1st junk character valued 46 (.).
Daniel improved clang to use llvm_report_error, so now we got:
$ clang t.c -c
fatal error: error in backend: Global variable 'x' has an invalid section specifier 'sadf': mach-o section specifier
requires a segment and section separated by a comma.
with no loc info. Now we get:
$ clang t.c -fsyntax-only
t.c:4:30: error: argument to 'section' attribute is not valid for this target: mach-o section specifier requires a segment
and section separated by a comma
int x __attribute__((section("sadf")));
^
which is nice :)
llvm-svn: 78586
--- Reverse-merging r78535 into '.':
D test/Sema/altivec-init.c
U include/clang/Basic/DiagnosticSemaKinds.td
U include/clang/AST/Expr.h
U include/clang/AST/StmtNodes.def
U include/clang/Parse/Parser.h
U include/clang/Parse/Action.h
U tools/clang-cc/clang-cc.cpp
U lib/Frontend/PrintParserCallbacks.cpp
U lib/CodeGen/CGExprScalar.cpp
U lib/Sema/SemaInit.cpp
U lib/Sema/Sema.h
U lib/Sema/SemaExpr.cpp
U lib/Sema/SemaTemplateInstantiateExpr.cpp
U lib/AST/StmtProfile.cpp
U lib/AST/Expr.cpp
U lib/AST/StmtPrinter.cpp
U lib/Parse/ParseExpr.cpp
U lib/Parse/ParseExprCXX.cpp
llvm-svn: 78551
In addition to being defined by the AltiVec PIM, this is also the vector
initializer syntax used by OpenCL, so that vector literals are compatible
with macro arguments.
llvm-svn: 78535
with array accesses. In the process, refactor some common logic in
RetrieveElement() and RetrieveField() into RetrieveFieldOrElementCommon().
llvm-svn: 78349
Permit a class to friend its class members in C++ 98, as long as extensions
are enabled (and even when they aren't, only give an extwarn about it).
llvm-svn: 78332
we were going to enter into the scope of a class template or class
template partial specialization, rebuild that type so that it can
refer to members of the current instantiation, as in code like
template<typename T>
struct X {
typedef T* pointer;
pointer data();
};
template<typename T>
typename X<T>::pointer X<T>::data() { ... }
Without rebuilding the return type of this out-of-line definition, the
canonical return type of the out-of-line definition (a TypenameType)
will not match the canonical return type of the declaration (the
canonical type of T*).
llvm-svn: 78316
transform, then use the result for template instantiation. The generic
transformation fixes a few issues:
- It copes better with template template parameters and member
templates (when they're implemented).
- The logic used to replace template template parameters with their
arguments is now centralized in TransformDecl, so that it will apply
for other declaration-instantiation steps.
- The error-recovery strategy is normalized now, so that any error
results in a NULL TemplateName.
llvm-svn: 78292
implementation of '#pragma unused' by not constructing intermediate
DeclRefExprs, but instead do the name lookup directly. The
implementation is greatly simplified.
Along the way, degrade '#pragma unused(undeclaredvariable)' to a
warning instead of being a hard error. This implements:
<rdar://problem/6761874> [sema] allow #pragma unused to reference undefined variable (with warning)
llvm-svn: 78019
template partial specialization. Then, use those template arguments
when instantiating members of that class template partial
specialization. Fixes PR4607.
llvm-svn: 77925
made to RegionStore (and related classes) in order to handle some
analyzer failures involving casts and manipulation of symbolic memory.
The root of the change is in StoreManager::CastRegion(). Instead of
using ad hoc heuristics to decide when to layer an ElementRegion on a
casted MemRegion, we now always layer an ElementRegion when the cast
type is different than the original type of the region. This carries
the current cast information associated with a region around without
resorting to the error prone recording of "casted types" in GRState.
Along with this new policy of layering ElementRegions, I added a new
algorithm to strip away existing ElementRegions when they simply
represented casts of a base memory object. This algorithm computes
the raw "byte offset" that an ElementRegion represents from the base
region, and allows the new ElementRegion to be based off that offset.
The added benefit is that this naturally handles a series of casts of
a MemRegion without building up a set of redundant ElementRegions
(thus canonicalizing the region view).
Other related changes that cascaded from this one (as tests were
failing in RegionStore):
- Revamped RegionStoreManager::InvalidateRegion() to completely remove
all bindings and default values from a region and all subregions.
Now invalidated fields are not bound directly to new symbolic
values; instead the base region has a "default" symbol value from
which "derived symbols" can be created. The main advantage of this
approach is that it allows us to invalidate a region hierarchy and
then lazily instantiate new values no matter how deep the hierarchy
went (i.e., regardless of the number of field accesses,
e.g. x->f->y->z->...). The previous approach did not do this.
- Slightly reworked RegionStoreManager::RemoveDeadBindings() to also
incorporate live symbols and live regions that do not have direct
bindings but also have "default values" used for lazy instantiation.
The changes to 'InvalidateRegion' revealed that these were necessary
in order to achieve lazy instantiation of values in the region store
with those bindings being removed too early.
- The changes to InvalidateRegion() and RemoveDeadBindings() revealed
a serious bug in 'getSubRegionMap()' where not all region -> subregion
relationships involved in actually bindings (explicit and implicit)
were being recorded. This has been fixed by using a worklist algorithm
to iteratively fill in the region map.
- Added special support to RegionStoreManager::Bind()/Retrieve() to handle
OSAtomicCompareAndSwap in light of the new 'CastRegion' changes and the
layering of ElementRegions.
- Fixed a bug in SymbolReaper::isLive() where derived symbols were not
being marked live if the symbol they were derived from was also live.
This fix was critical for getting lazy instantiation in RegionStore
to work.
- Tidied up the implementation of ValueManager::getXXXSymbolVal() methods
to use SymbolManager::canSymbolicate() to decide whether or not a
symbol should be symbolicated.
- 'test/Analysis/misc-ps-xfail.m' now passes; that test case has been
moved to 'test/Analysis/misc-ps.m'.
- Tweaked some pretty-printing of MemRegions, and implemented
'ElementRegion::getRawOffset()' for use with the CastRegion changes.
llvm-svn: 77782
- MultiTestRunner will eventually be renamed to 'lit', for LLVM integrated
tester/testing. This has the pros of being pronouncable and short.
- "Project" level configuration lives in 'lit.cfg', which is also what lit uses
to find the root testing directory in some cases. This can be overridden for
use in project files which want to precisely specify where things are.
- TestRunner.py is not longer able to be invoked directly.
- Moved some code to Util.py.
- Introduced a configuration object.
- Cleaned up --help, removed a few not-very-useful options.
- Tried not to break anything that works. :)
llvm-svn: 77665
for those extra-esoteric cases. Not that any two given C++ compilers
agree on this test case, but this change gives us a strong definition
of equivalent types.
llvm-svn: 77664
that we would silently do bad things with virtual bases in the layout
code, so, we just turn them off. When people do better things with
them, we can turn them back on.
llvm-svn: 77556
-Accept an ObjC method and find all message expressions that this method may respond to.
-Accept an ObjC message expression and find all methods that may respond to it.
llvm-svn: 77551
template arguments, as in template specialization types. This permits
matching out-of-line definitions of members for class templates that
involve non-type template parameters.
llvm-svn: 77462
Remove XFAIL from 'conditional-expr-4.m' test case (which would have caught this).
Also tweaked several aspects of the test to jive with the current type checking.
llvm-svn: 77453
could cause false positives if any the subexpressions had side-effects. These
initializers weren't evaluated because the StoreManager would need to handle
them, but that's an orthogonal problem of whether or not the StoreManager can
handle the binding.
llvm-svn: 77361
- Accept multiple values instead of embedding separator.
- Make sure this gets used when searching for 'clang' binary.
- Switch makefiles to using --path to stay in sync with cmake.
llvm-svn: 77234
Doug, please look at decltype-crash and instantiate-function-1.mm, I'm not sure
if they are actually testing the right thing / anything.
llvm-svn: 77070
Something strange is going on here; this test randomly started failing after
unrelated changes to TestRunner.py (even though it runs the same
script).
Argiris or Doug, can one of you investigate?
llvm-svn: 77063
Note that this also fixes a bug that affects non-template code, where we
were not treating out-of-line static data members are "file-scope" variables,
and therefore not checking their initializers.
llvm-svn: 77002
Enhance test case to cover 'isa' access on interface types (clang produces an error, GCC produces a warning).
Still need back-end CodeGen for ObjCIsaExpr.
llvm-svn: 76979
and __has_trivial_constructor builtin pseudo-functions and
additionally implements __has_trivial_copy and __has_trivial_assign,
from John McCall!
llvm-svn: 76916
- Steve, can you take a look at this? It seems like this code should live
elsewhere, and there is a FIXME about having Sema validates the UTF-8 to
UTF-16 conversion.
llvm-svn: 76915
regardless of the architecture).
- This is a good default for development & testing; for example without this
any tests using 'clang' in the test suite will fail on PowerPC, since the
driver will avoid using clang.
- We don't want to actually ship something built this way, but that should be
handled via some sort of configuration file.
llvm-svn: 76886
- Move Sema::ObjCQualifiedIdTypesAreCompatible(), Sema::QualifiedIdConformsQualifiedId(), and a couple helper functions to ASTContext.
- Change ASTContext::canAssignObjCInterfaces() to use ASTContext:: ObjCQualifiedIdTypesAreCompatible().
- Tweak several test cases to accommodate the new/improved type checking.
llvm-svn: 76830
value. This is on by default, and controlled by -Wreturn-type (-Wmost
-Wall). I believe there should be very few false positives, though
the most interesting case would be:
int() { bar(); }
when bar does:
bar() { while (1) ; }
Here, we assume functions return, unless they are marked with the
noreturn attribute. I can envision a fixit note for functions that
never return normally that don't have a noreturn attribute to add a
noreturn attribute.
If anyone spots other false positives, let me know!
llvm-svn: 76821
templates, e.g.,
template<typename T>
struct Outer {
struct Inner;
};
template<typename T>
struct Outer<T>::Inner {
// ...
};
Implementing this feature required some extensions to ActOnTag, which
now takes a set of template parameter lists, and is the precursor to
removing the ActOnClassTemplate function from the parser Action
interface. The reason for this approach is simple: the parser cannot
tell the difference between a class template definition and the
definition of a member of a class template; both have template
parameter lists, and semantic analysis determines what that template
parameter list means.
There is still some cleanup to do with ActOnTag and
ActOnClassTemplate. This commit provides the basic functionality we
need, however.
llvm-svn: 76820
'Checker' interface. An updated test case illustrates that after calling a
function with the 'nonnull' attribute we now register the fact that the passed
pointer must be non-null. This retention of information was not possible with
the previously used GRSimpleAPICheck interface.
llvm-svn: 76797
real. It turns out that we need to actually move all of the qualifiers
up to the array type itself, then recanonicalize the deduced template
argument type.
llvm-svn: 76788