Similar to
commit bc044a88ee ("[Inline] prevent inlining on stack protector mismatch")
The noprofile function attribute is meant to prevent compiler
instrumentation from being inserted into a function. Inlining may defeat
the developer's intent. If the caller and callee don't either BOTH have
the attribute or BOTH lack the attribute, suppress inline substitution.
This matches behavior being proposed in GCC:
https://gcc.gnu.org/pipermail/gcc-patches/2021-June/573511.htmlhttps://gcc.gnu.org/bugzilla/show_bug.cgi?id=80223
Add LangRef entry for noprofile fn attr, similar to text added in D93422
and D104944.
Reviewed By: MaskRay, melver, phosek
Differential Revision: https://reviews.llvm.org/D104810
Add UNIQUED and DISTINCT properties in Metadata.def and use them to
implement restrictions on the `distinct` property of MDNodes:
* DIExpression can currently be parsed from IR or read from bitcode
as `distinct`, but this property is silently dropped when printing
to IR. This causes accepted IR to fail to round-trip. As DIExpression
appears inline at each use in the canonical form of IR, it cannot
actually be `distinct` anyway, as there is no syntax to describe it.
* Similarly, DIArgList is conceptually always uniqued. It is currently
restricted to only appearing in contexts where there is no syntax for
`distinct`, but for consistency it is treated equivalently to
DIExpression in this patch.
* DICompileUnit is already restricted to always being `distinct`, but
along with adding general support for the inverse restriction I went
ahead and described this in Metadata.def and updated the parser to be
general. Future nodes which have this restriction can share this
support.
The new UNIQUED property applies to DIExpression and DIArgList, and
forbids them to be `distinct`. It also implies they are canonically
printed inline at each use, rather than via MDNode ID.
The new DISTINCT property applies to DICompileUnit, and requires it to
be `distinct`.
A potential alternative change is to forbid the non-inline syntax for
DIExpression entirely, as is done with DIArgList implicitly by requiring
it appear in the context of a function. For example, we would forbid:
!named = !{!0}
!0 = !DIExpression()
Instead we would only accept the equivalent inlined version:
!named = !{!DIExpression()}
This essentially removes the ability to create a `distinct` DIExpression
by construction, as there is no syntax for `distinct` inline. If this
patch is accepted as-is, the result would be that the non-canonical
version is accepted, but the following would be an error and produce a diagnostic:
!named = !{!0}
; error: 'distinct' not allowed for !DIExpression()
!0 = distinct !DIExpression()
Also update some documentation to consistently use the inline syntax for
DIExpression, and to describe the restrictions on `distinct` for nodes
where applicable.
Reviewed By: StephenTozer, t-tye
Differential Revision: https://reviews.llvm.org/D104827
I added an assertion in D91816 (documenting behavior added in D93422)
that callers and callees with mismatched fn attr's related to stack
protectors should not occur unless the callee was attributed
always_inline.
This falls apart when a call, invoke, or callbr (any instruction
inheriting from CallBase) itself has an always_inline attribute. Clang
will emit such attributes on Instructions when __attribute__((flatten))
is used to recursively force inlining from a caller.
Since these assertions only had the caller and callee Functions, and not
the call site (CallBase derived classes), we would have to search the
caller for such instructions to reconstruct the call site information.
But at that point, inlining has already occurred; the call site has
already been removed from the caller.
Remove the assertions, add a unit test for always_inline call sites, and
update the LangRef.
Another curiosity is that the always_inline Attribute on Instructions is
only expanded by the inline pass, not the always_inline pass.
Thanks to @pcc on this report when building Android's RunTime (ART)
interpreter.
Reviewed By: pcc, MaskRay
Differential Revision: https://reviews.llvm.org/D104944
the call's return type is void
Instead of trying hard to prevent global optimization passes such as
deadargelim from changing the return type to void, just ignore the
bundle if the return type is void. clang currently emits calls to
@llvm.objc.clang.arc.noop.use, which consumes the function call result,
immediately after the function call to prevent changes to the return
type, but optimization passes can delete the call to
@llvm.objc.clang.arc.noop.use if the function call doesn't return, which
enables deadargelim to change the return type.
rdar://76671438
Differential Revision: https://reviews.llvm.org/D103062
This intrinsic blocks floating point transformations by the optimizer.
Author: Pengfei
Reviewed By: LuoYuanke, Andy Kaylor, Craig Topper, kpn
Differential Revision: https://reviews.llvm.org/D99675
Adds some more text to the documentation for the noimplicitfloat
function attribute. Hopefully, this makes it clearer what
qualifies an implicit vs. explicit float, without becoming overly
long or going into target-specific details.
Reviewed By: rnk, craig.topper
Differential Revision: https://reviews.llvm.org/D104061
This can be seen as a follow up to commit 0ee439b705,
that changed the second argument of __powidf2, __powisf2 and
__powitf2 in compiler-rt from si_int to int. That was to align with
how those runtimes are defined in libgcc.
One thing that seem to have been missing in that patch was to make
sure that the rest of LLVM also handle that the argument now depends
on the size of int (not using the si_int machine mode for 32-bit).
When using __builtin_powi for a target with 16-bit int clang crashed.
And when emitting libcalls to those rtlib functions, typically when
lowering @llvm.powi), the backend would always prepare the exponent
argument as an i32 which caused miscompiles when the rtlib was
compiled with 16-bit int.
The solution used here is to use an overloaded type for the second
argument in @llvm.powi. This way clang can use the "correct" type
when lowering __builtin_powi, and then later when emitting the libcall
it is assumed that the type used in @llvm.powi matches the rtlib
function.
One thing that needed some extra attention was that when vectorizing
calls several passes did not support that several arguments could
be overloaded in the intrinsics. This patch allows overload of a
scalar operand by adding hasVectorInstrinsicOverloadedScalarOpd, with
an entry for powi.
Differential Revision: https://reviews.llvm.org/D99439
This patch implements vector-predicated intrinsics on IR level for fadd,
fsub, fmul, fdiv and frem. There operate in the default floating-point
environment. We will use constrained fp operand bundles for constrained
vector-predicated fp math (D93455).
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D93470
I don't like landing this change, but it's an acknowledgement of a practical reality. Despite not having well specified semantics for inttoptr and ptrtoint involving non-integral pointer types, they are used in practice. Here's a quick summary of the current pragmatic reality:
* I happen to know that the main external user of non-integral pointers has effectively disabled the verifier rules.
* RS4GC (the lowering pass for abstract GC machine model which is the key motivation for non-integral pointers), even supports them. We just have all the tests using an integral pointer space to let the verifier run.
* Certain idioms (such as alignment checks for alignment N, where any relocation is guaranteed to be N byte aligned) are fine in practice.
* As implemented, inttoptr/ptrtoint are CSEd and are not control dependent. This means that any code which is intending to check a particular bit pattern at site of use must be wrapped in an intrinsic or external function call.
This change allows them in the Verifier, and updates the LangRef to specific them as implementation dependent. This allows us to acknowledge current reality while still leaving ourselves room to punt on figuring out "good" semantics until the future.
https://reviews.llvm.org/D95745 introduced a new `unwind` keyword for inline assembler expressions. Inline asms marked with the `unwind` keyword allows stack unwinding from inline assembly because the compiler emits unwinding information ("around" the inline asm) as it would for calls/invokes. Unwinding the stack from within non-unwind inline asm may cause UB.
Reviewed By: Amanieu
Differential Revision: https://reviews.llvm.org/D102642
SwiftTailCC has a different set of requirements than the C calling convention
for a tail call. The exact argument sequence doesn't have to match, but fewer
ABI-affecting attributes are allowed.
Also make sure the musttail diagnostic triggers if a musttail call isn't
actually a tail call.
There can be a need for some optimizations to get (base, offset)
for any GC pointer. The base can be calculated by generating
needed instructions as it is done by the
RewriteStatepointsForGC::findBasePointer() function. The offset
can be calculated in the same way. Though to not expose the base
calculation and to make the offset calculation as simple as
ptrtoint(derived_ptr) - ptrtoint(base_ptr), which is illegal
outside RS4GC, this patch introduces 2 intrinsics:
@llvm.experimental.gc.get.pointer.base(%derived_ptr)
@llvm.experimental.gc.get.pointer.offset(%derived_ptr)
These intrinsics are inlined by RS4GC along with generation of
statepoint sequences.
With these new intrinsics the GC parseable lowering for atomic
memcpy intrinsics (6ec2c5e402)
could be implemented as a separate pass.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D100445
We really ought to support no_sanitize("coverage") in line with other
sanitizers. This came up again in discussions on the Linux-kernel
mailing lists, because we currently do workarounds using objtool to
remove coverage instrumentation. Since that support is only on x86, to
continue support coverage instrumentation on other architectures, we
must support selectively disabling coverage instrumentation via function
attributes.
Unfortunately, for SanitizeCoverage, it has not been implemented as a
sanitizer via fsanitize= and associated options in Sanitizers.def, but
rolls its own option fsanitize-coverage. This meant that we never got
"automatic" no_sanitize attribute support.
Implement no_sanitize attribute support by special-casing the string
"coverage" in the NoSanitizeAttr implementation. To keep the feature as
unintrusive to existing IR generation as possible, define a new negative
function attribute NoSanitizeCoverage to propagate the information
through to the instrumentation pass.
Fixes: https://bugs.llvm.org/show_bug.cgi?id=49035
Reviewed By: vitalybuka, morehouse
Differential Revision: https://reviews.llvm.org/D102772
In the WebAssembly target, we would like to allow alloca in two address
spaces. The alloca instruction already has an address space argument,
but the verifier asserts that the address space of an alloca is the
default alloca address space from the datalayout. This patch removes
this restriction. Targets that would like to impose additional
restrictions should do so via target-specific verification passes.
Differential Revision: https://reviews.llvm.org/D101045
This patch is the Part-1 (FE Clang) implementation of HW Exception handling.
This new feature adds the support of Hardware Exception for Microsoft Windows
SEH (Structured Exception Handling).
This is the first step of this project; only X86_64 target is enabled in this patch.
Compiler options:
For clang-cl.exe, the option is -EHa, the same as MSVC.
For clang.exe, the extra option is -fasync-exceptions,
plus -triple x86_64-windows -fexceptions and -fcxx-exceptions as usual.
NOTE:: Without the -EHa or -fasync-exceptions, this patch is a NO-DIFF change.
The rules for C code:
For C-code, one way (MSVC approach) to achieve SEH -EHa semantic is to follow
three rules:
* First, no exception can move in or out of _try region., i.e., no "potential
faulty instruction can be moved across _try boundary.
* Second, the order of exceptions for instructions 'directly' under a _try
must be preserved (not applied to those in callees).
* Finally, global states (local/global/heap variables) that can be read
outside of _try region must be updated in memory (not just in register)
before the subsequent exception occurs.
The impact to C++ code:
Although SEH is a feature for C code, -EHa does have a profound effect on C++
side. When a C++ function (in the same compilation unit with option -EHa ) is
called by a SEH C function, a hardware exception occurs in C++ code can also
be handled properly by an upstream SEH _try-handler or a C++ catch(...).
As such, when that happens in the middle of an object's life scope, the dtor
must be invoked the same way as C++ Synchronous Exception during unwinding
process.
Design:
A natural way to achieve the rules above in LLVM today is to allow an EH edge
added on memory/computation instruction (previous iload/istore idea) so that
exception path is modeled in Flow graph preciously. However, tracking every
single memory instruction and potential faulty instruction can create many
Invokes, complicate flow graph and possibly result in negative performance
impact for downstream optimization and code generation. Making all
optimizations be aware of the new semantic is also substantial.
This design does not intend to model exception path at instruction level.
Instead, the proposed design tracks and reports EH state at BLOCK-level to
reduce the complexity of flow graph and minimize the performance-impact on CPP
code under -EHa option.
One key element of this design is the ability to compute State number at
block-level. Our algorithm is based on the following rationales:
A _try scope is always a SEME (Single Entry Multiple Exits) region as jumping
into a _try is not allowed. The single entry must start with a seh_try_begin()
invoke with a correct State number that is the initial state of the SEME.
Through control-flow, state number is propagated into all blocks. Side exits
marked by seh_try_end() will unwind to parent state based on existing
SEHUnwindMap[].
Note side exits can ONLY jump into parent scopes (lower state number).
Thus, when a block succeeds various states from its predecessors, the lowest
State triumphs others. If some exits flow to unreachable, propagation on those
paths terminate, not affecting remaining blocks.
For CPP code, object lifetime region is usually a SEME as SEH _try.
However there is one rare exception: jumping into a lifetime that has Dtor but
has no Ctor is warned, but allowed:
Warning: jump bypasses variable with a non-trivial destructor
In that case, the region is actually a MEME (multiple entry multiple exits).
Our solution is to inject a eha_scope_begin() invoke in the side entry block to
ensure a correct State.
Implementation:
Part-1: Clang implementation described below.
Two intrinsic are created to track CPP object scopes; eha_scope_begin() and eha_scope_end().
_scope_begin() is immediately added after ctor() is called and EHStack is pushed.
So it must be an invoke, not a call. With that it's also guaranteed an
EH-cleanup-pad is created regardless whether there exists a call in this scope.
_scope_end is added before dtor(). These two intrinsics make the computation of
Block-State possible in downstream code gen pass, even in the presence of
ctor/dtor inlining.
Two intrinsic, seh_try_begin() and seh_try_end(), are added for C-code to mark
_try boundary and to prevent from exceptions being moved across _try boundary.
All memory instructions inside a _try are considered as 'volatile' to assure
2nd and 3rd rules for C-code above. This is a little sub-optimized. But it's
acceptable as the amount of code directly under _try is very small.
Part-2 (will be in Part-2 patch): LLVM implementation described below.
For both C++ & C-code, the state of each block is computed at the same place in
BE (WinEHPreparing pass) where all other EH tables/maps are calculated.
In addition to _scope_begin & _scope_end, the computation of block state also
rely on the existing State tracking code (UnwindMap and InvokeStateMap).
For both C++ & C-code, the state of each block with potential trap instruction
is marked and reported in DAG Instruction Selection pass, the same place where
the state for -EHsc (synchronous exceptions) is done.
If the first instruction in a reported block scope can trap, a Nop is injected
before this instruction. This nop is needed to accommodate LLVM Windows EH
implementation, in which the address in IPToState table is offset by +1.
(note the purpose of that is to ensure the return address of a call is in the
same scope as the call address.
The handler for catch(...) for -EHa must handle HW exception. So it is
'adjective' flag is reset (it cannot be IsStdDotDot (0x40) that only catches
C++ exceptions).
Suppress push/popTerminate() scope (from noexcept/noTHrow) so that HW
exceptions can be passed through.
Original llvm-dev [RFC] discussions can be found in these two threads below:
https://lists.llvm.org/pipermail/llvm-dev/2020-March/140541.htmlhttps://lists.llvm.org/pipermail/llvm-dev/2020-April/141338.html
Differential Revision: https://reviews.llvm.org/D80344/new/
Swift's new concurrency features are going to require guaranteed tail calls so
that they don't consume excessive amounts of stack space. This would normally
mean "tailcc", but there are also Swift-specific ABI desires that don't
naturally go along with "tailcc" so this adds another calling convention that's
the combination of "swiftcc" and "tailcc".
Support is added for AArch64 and X86 for now.
This extends any frame record created in the function to include that
parameter, passed in X22.
The new record looks like [X22, FP, LR] in memory, and FP is stored with 0b0001
in bits 63:60 (CodeGen assumes they are 0b0000 in normal operation). The effect
of this is that tools walking the stack should expect to see one of three
values there:
* 0b0000 => a normal, non-extended record with just [FP, LR]
* 0b0001 => the extended record [X22, FP, LR]
* 0b1111 => kernel space, and a non-extended record.
All other values are currently reserved.
If compiling for arm64e this context pointer is address-discriminated with the
discriminator 0xc31a and the DB (process-specific) key.
There is also an "i8** @llvm.swift.async.context.addr()" intrinsic providing
front-ends access to this slot (and forcing its creation initialized to nullptr
if necessary).
The opaque pointer type is essentially just a normal pointer type with a
null pointee type.
This also adds support for the opaque pointer type to the bitcode
reader/writer, as well as to textual IR.
To avoid confusion with existing pointer types, we disallow creating a
pointer to an opaque pointer.
Opaque pointer types should not be widely used at this point since many
parts of LLVM still do not support them. The next steps are to add some
very simple use cases of opaque pointers to make sure they work, then
start pretending that all pointers are opaque pointers and see what
breaks.
https://lists.llvm.org/pipermail/llvm-dev/2021-May/150359.html
Reviewed By: dblaikie, dexonsmith, pcc
Differential Revision: https://reviews.llvm.org/D101704
The Linux kernel objtool diagnostic `call without frame pointer save/setup`
arise in multiple instrumentation passes (asan/tsan/gcov). With the mechanism
introduced in D100251, it's trivial to respect the command line
-m[no-]omit-leaf-frame-pointer/-f[no-]omit-frame-pointer, so let's do it.
Fix: https://github.com/ClangBuiltLinux/linux/issues/1236 (tsan)
Fix: https://github.com/ClangBuiltLinux/linux/issues/1238 (asan)
Also document the function attribute "frame-pointer" which is long overdue.
Differential Revision: https://reviews.llvm.org/D101016
Don't phrase the semantics in terms of the optimizer. Instead have a
more straightforward execution based semantic.
Reviewed By: ebrevnov
Differential Revision: https://reviews.llvm.org/D63439
This patch clarifies the semantics of the nofree function attribute to make clear that it provides an "as if" semantic. That is, a nofree function is guaranteed not to free memory which existed before the call, but might allocate and then deallocate that same memory within the lifetime of the callee.
This is the result of the discussion on llvm-dev under the thread "Ambiguity in the nofree function attribute".
The most important part of this change is the LangRef wording. The rest is minor comment changes to emphasize the new semantics where code was accidentally consistent, and fix one place which wasn't consistent. That one place is currently narrowly used as it is primarily part of the ongoing (and not yet enabled) deref-at-point semantics work.
Differential Revision: https://reviews.llvm.org/D100141
This patch clarifies the semantics of nocapture attribute.
A 'Pointer Capture' subsection is added to describe the semantics of pointer capture first.
For the nocapture example with two same pointer arguments, it is consistent with the semantics that Alive2 used to run lit tests.
Reviewed By: nlopes
Differential Revision: https://reviews.llvm.org/D97924
When we pass a AArch64 Homogeneous Floating-Point
Aggregate (HFA) argument with increased alignment
requirements, for example
struct S {
__attribute__ ((__aligned__(16))) double v[4];
};
Clang uses `[4 x double]` for the parameter, which is passed
on the stack at alignment 8, whereas it should be at
alignment 16, following Rule C.4 in
AAPCS (https://github.com/ARM-software/abi-aa/blob/master/aapcs64/aapcs64.rst#642parameter-passing-rules)
Currently we don't have a way to express in LLVM IR the
alignment requirements of the function arguments. The align
attribute is applicable to pointers only, and only for some
special ways of passing arguments (e..g byval). When
implementing AAPCS32/AAPCS64, clang resorts to dubious hacks
of coercing to types, which naturally have the needed
alignment. We don't have enough types to cover all the
cases, though.
This patch introduces a new use of the stackalign attribute
to control stack slot alignment, when and if an argument is
passed in memory.
The attribute align is left as an optimizer hint - it still
applies to pointer types only and pertains to the content of
the pointer, whereas the alignment of the pointer itself is
determined by the stackalign attribute.
For byval arguments, the stackalign attribute assumes the
role, previously perfomed by align, falling back to align if
stackalign` is absent.
On the clang side, when passing arguments using the "direct"
style (cf. `ABIArgInfo::Kind`), now we can optionally
specify an alignment, which is emitted as the new
`stackalign` attribute.
Patch by Momchil Velikov and Lucas Prates.
Differential Revision: https://reviews.llvm.org/D98794
I think byval/sret and the others are close to being able to rip out
the code to support the missing type case. A lot of this code is
shared with inalloca, so catch this up to the others so that can
happen.
This patch adds a new llvm.experimental.stepvector intrinsic,
which takes no arguments and returns a linear integer sequence of
values of the form <0, 1, ...>. It is primarily intended for
scalable vectors, although it will work for fixed width vectors
too. It is intended that later patches will make use of this
new intrinsic when vectorising induction variables, currently only
supported for fixed width. I've added a new CreateStepVector
method to the IRBuilder, which will generate a call to this
intrinsic for scalable vectors and fall back on creating a
ConstantVector for fixed width.
For scalable vectors this intrinsic is lowered to a new ISD node
called STEP_VECTOR, which takes a single constant integer argument
as the step. During lowering this argument is set to a value of 1.
The reason for this additional argument at the codegen level is
because in future patches we will introduce various generic DAG
combines such as
mul step_vector(1), 2 -> step_vector(2)
add step_vector(1), step_vector(1) -> step_vector(2)
shl step_vector(1), 1 -> step_vector(2)
etc.
that encourage a canonical format for all targets. This hopefully
means all other targets supporting scalable vectors can benefit
from this too.
I've added cost model tests for both fixed width and scalable
vectors:
llvm/test/Analysis/CostModel/AArch64/neon-stepvector.ll
llvm/test/Analysis/CostModel/AArch64/sve-stepvector.ll
as well as codegen lowering tests for fixed width and scalable
vectors:
llvm/test/CodeGen/AArch64/neon-stepvector.ll
llvm/test/CodeGen/AArch64/sve-stepvector.ll
See this thread for discussion of the intrinsic:
https://lists.llvm.org/pipermail/llvm-dev/2021-January/147943.html
This attribute represents the minimum and maximum values vscale can
take. For now this attribute is not hooked up to anything during
codegen, this will be added in the future when such codegen is
considered stable.
Additionally hook up the -msve-vector-bits=<x> clang option to emit this
attribute.
Differential Revision: https://reviews.llvm.org/D98030
There are a couple of caveats when it comes to how vectors are
stored to memory, and thereby also how bitcast between vector
and integer types work, in LLVM IR. Specially in relation to
endianess. This patch is an attempt to document such things.
Reviewed By: nlopes
Differential Revision: https://reviews.llvm.org/D94964
This patch adds support for intrinsic overloading on unnamed types.
This fixes PR38117 and PR48340 and will also be needed for the Full Restrict Patches (D68484).
The main problem is that the intrinsic overloading name mangling is using 's_s' for unnamed types.
This can result in identical intrinsic mangled names for different function prototypes.
This patch changes this by adding a '.XXXXX' to the intrinsic mangled name when at least one of the types is based on an unnamed type, ensuring that we get a unique name.
Implementation details:
- The mapping is created on demand and kept in Module.
- It also checks for existing clashes and recycles potentially existing prototypes and declarations.
- Because of extra data in Module, Intrinsic::getName needs an extra Module* argument and, for speed, an optional FunctionType* argument.
- I still kept the original two-argument 'Intrinsic::getName' around which keeps the original behavior (providing the base name).
-- Main reason is that I did not want to change the LLVMIntrinsicGetName version, as I don't know how acceptable such a change is
-- The current situation already has a limitation. So that should not get worse with this patch.
- Intrinsic::getDeclaration and the verifier are now using the new version.
Other notes:
- As far as I see, this should not suffer from stability issues. The count is only added for prototypes depending on at least one anonymous struct
- The initial count starts from 0 for each intrinsic mangled name.
- In case of name clashes, existing prototypes are remembered and reused when that makes sense.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D91250
Recently we improved the lowering of low overhead loops and tail
predicated loops, but concentrated first on the DLS do style loops. This
extends those improvements over to the WLS while loops, improving the
chance of lowering them successfully. To do this the lowering has to
change a little as the instructions are terminators that produce a value
- something that needs to be treated carefully.
Lowering starts at the Hardware Loop pass, inserting a new
llvm.test.start.loop.iterations that produces both an i1 to control the
loop entry and an i32 similar to the llvm.start.loop.iterations
intrinsic added for do loops. This feeds into the loop phi, properly
gluing the values together:
%wls = call { i32, i1 } @llvm.test.start.loop.iterations.i32(i32 %div)
%wls0 = extractvalue { i32, i1 } %wls, 0
%wls1 = extractvalue { i32, i1 } %wls, 1
br i1 %wls1, label %loop.ph, label %loop.exit
...
loop:
%lsr.iv = phi i32 [ %wls0, %loop.ph ], [ %iv.next, %loop ]
..
%iv.next = call i32 @llvm.loop.decrement.reg.i32(i32 %lsr.iv, i32 1)
%cmp = icmp ne i32 %iv.next, 0
br i1 %cmp, label %loop, label %loop.exit
The llvm.test.start.loop.iterations need to be lowered through ISel
lowering as a pair of WLS and WLSSETUP nodes, which each get converted
to t2WhileLoopSetup and t2WhileLoopStart Pseudos. This helps prevent
t2WhileLoopStart from being a terminator that produces a value,
something difficult to control at that stage in the pipeline. Instead
the t2WhileLoopSetup produces the value of LR (essentially acting as a
lr = subs rn, 0), t2WhileLoopStart consumes that lr value (the Bcc).
These are then converted into a single t2WhileLoopStartLR at the same
point as t2DoLoopStartTP and t2LoopEndDec. Otherwise we revert the loop
to prevent them from progressing further in the pipeline. The
t2WhileLoopStartLR is a single instruction that takes a GPR and produces
LR, similar to the WLS instruction.
%1:gprlr = t2WhileLoopStartLR %0:rgpr, %bb.3
t2B %bb.1
...
bb.2.loop:
%2:gprlr = PHI %1:gprlr, %bb.1, %3:gprlr, %bb.2
...
%3:gprlr = t2LoopEndDec %2:gprlr, %bb.2
t2B %bb.3
The t2WhileLoopStartLR can then be treated similar to the other low
overhead loop pseudos, eventually being lowered to a WLS providing the
branches are within range.
Differential Revision: https://reviews.llvm.org/D97729
This patch introduces a new intrinsic @llvm.experimental.vector.splice
that constructs a vector of the same type as the two input vectors,
based on a immediate where the sign of the immediate distinguishes two
variants. A positive immediate specifies an index into the first vector
and a negative immediate specifies the number of trailing elements to
extract from the first vector.
For example:
@llvm.experimental.vector.splice(<A,B,C,D>, <E,F,G,H>, 1) ==> <B, C, D, E> ; index
@llvm.experimental.vector.splice(<A,B,C,D>, <E,F,G,H>, -3) ==> <B, C, D, E> ; trailing element count
These intrinsics support both fixed and scalable vectors, where the
former is lowered to a shufflevector to maintain existing behaviour,
although while marked as experimental the recommended way to express
this operation for fixed-width vectors is to use shufflevector. For
scalable vectors where it is not possible to express a shufflevector
mask for this operation, a new ISD node has been implemented.
This is one of the named shufflevector intrinsics proposed on the
mailing-list in the RFC at [1].
Patch by Paul Walker and Cullen Rhodes.
[1] https://lists.llvm.org/pipermail/llvm-dev/2020-November/146864.html
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D94708