This is mostly a mechanical change to make TargetInstrInfo API take
MachineInstr& (instead of MachineInstr* or MachineBasicBlock::iterator)
when the argument is expected to be a valid MachineInstr. This is a
general API improvement.
Although it would be possible to do this one function at a time, that
would demand a quadratic amount of churn since many of these functions
call each other. Instead I've done everything as a block and just
updated what was necessary.
This is mostly mechanical fixes: adding and removing `*` and `&`
operators. The only non-mechanical change is to split
ARMBaseInstrInfo::getOperandLatencyImpl out from
ARMBaseInstrInfo::getOperandLatency. Previously, the latter took a
`MachineInstr*` which it updated to the instruction bundle leader; now,
the latter calls the former either with the same `MachineInstr&` or the
bundle leader.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
Note: I updated WebAssembly, Lanai, and AVR (despite being
off-by-default) since it turned out to be easy. I couldn't run tests
for AVR since llc doesn't link with it turned on.
llvm-svn: 274189
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
Fix PR27943 "Bad machine code: Using an undefined physical register".
SUBFC8 implicitly defines the CR0 register, but this was omitted in
the instruction definition.
Patch by Jameson Nash <jameson@juliacomputing.com>
Reviewers: hfinkel
Differential Revision: http://reviews.llvm.org/D20802
llvm-svn: 271425
This patch corresponds to review:
http://reviews.llvm.org/D19683
Simply adds the bits for being able to specify -mcpu=pwr9 to the back end.
llvm-svn: 268950
Resolve Bug 27046 (https://llvm.org/bugs/show_bug.cgi?id=27046).
The PPCInstrInfo::optimizeCompareInstr function could create a new use of
CR0, even if CR0 were previously dead. This patch marks CR0 live if a use of
CR0 is created.
Author: Tom Jablin (tjablin)
Reviewers: hfinkel kbarton cycheng
http://reviews.llvm.org/D18884
llvm-svn: 266040
Change TargetInstrInfo API to take `MachineInstr&` instead of
`MachineInstr*` in the functions related to predicated instructions
(I'll try to come back later and get some of the rest). All of these
functions require non-null parameters already, so references are more
clear. As a bonus, this happens to factor away a host of implicit
iterator => pointer conversions.
No functionality change intended.
llvm-svn: 261605
Some compilers don't do exhaustive switch checking. For those compilers,
add an initialization to prevent un-initialized variable warnings from
firing. For compilers with exhaustive switch checking, we still get a
guarantee that the switch is exhaustive, and hence the initializations
are redundant, and a non-functional change.
llvm-svn: 257923
Only non-weighted predicates were handled in PPCInstrInfo::insertSelect. Handle
the weighted predicates as well.
This latent bug was triggered by r255398, because it added use of the
branch-weighted predicates.
While here, switch over an enum instead of an int to get the compiler to enforce
totality in the future.
llvm-svn: 257518
Also, remove an enum hack where enum values were used as indexes into an array.
We may want to make this a real class to allow pattern-based queries/customization (D13417).
llvm-svn: 252196
To commute a trivial rlwimi instructions (meaning one with a full mask and zero
shift), we'd need to ability to form an all-zero mask (instead of an all-one
mask) using rlwimi. We can't represent this, however, and we'll miscompile code
if we try.
The code quality problem that this highlights (that SDAG simplification can
lead to us generating an ISD::OR node with a constant zero LHS) will be fixed
as a follow-up.
Fixes PR24719.
llvm-svn: 246937
Add support for MIR serialization of PowerPC-specific operand target flags
(based on the generic infrastructure added in r244185 and r245383).
I won't even pretend that this is good test coverage, but this includes the
regression test associated with r246372. Adding an MIR test for that fix is far
superior to adding an IR-level test because particular instruction-scheduling
decisions are necessary in order to expose the bug, and using an MIR test we
can start the pipeline post-scheduling.
llvm-svn: 246373
This commit removes the global manager variable which is responsible for
storing and allocating pseudo source values and instead it introduces a new
manager class named 'PseudoSourceValueManager'. Machine functions now own an
instance of the pseudo source value manager class.
This commit also modifies the 'get...' methods in the 'MachinePointerInfo'
class to construct pseudo source values using the instance of the pseudo
source value manager object from the machine function.
This commit updates calls to the 'get...' methods from the 'MachinePointerInfo'
class in a lot of different files because those calls now need to pass in a
reference to a machine function to those methods.
This change will make it easier to serialize pseudo source values as it will
enable me to transform the mips specific MipsCallEntry PseudoSourceValue
subclass into two target independent subclasses.
Reviewers: Akira Hatanaka
llvm-svn: 244693
This is a direct port of the code from the X86 backend (r239486/r240361), which
uses the MachineCombiner to reassociate (floating-point) adds/muls to increase
ILP, to the PowerPC backend. The rationale is the same.
There is a lot of copy-and-paste here between the X86 code and the PowerPC
code, and we should extract at least some of this into CodeGen somewhere.
However, I don't want to do that until this code is enhanced to handle FMAs as
well. After that, we'll be in a better position to extract the common parts.
llvm-svn: 242279
PowerPC uses itineraries to describe processor pipelines (and dispatch-group
restrictions for P7/P8 cores). Unfortunately, the target-independent
implementation of TII.getInstrLatency calls ItinData->getStageLatency, and that
looks for the largest cycle count in the pipeline for any given instruction.
This, however, yields the wrong answer for the PPC itineraries, because we
don't encode the full pipeline. Because the functional units are fully
pipelined, we only model the initial stages (there are no relevant hazards in
the later stages to model), and so the technique employed by getStageLatency
does not really work. Instead, we should take the maximum output operand
latency, and that's what PPCInstrInfo::getInstrLatency now does.
This caused some test-case churn, including two unfortunate side effects.
First, the new arrangement of copies we get from function parameters now
sometimes blocks VSX FMA mutation (a FIXME has been added to the code and the
test cases), and we have one significant test-suite regression:
SingleSource/Benchmarks/BenchmarkGame/spectral-norm
56.4185% +/- 18.9398%
In this benchmark we have a loop with a vectorized FP divide, and it with the
new scheduling both divides end up in the same dispatch group (which in this
case seems to cause a problem, although why is not exactly clear). The grouping
structure is hard to predict from the bottom of the loop, and there may not be
much we can do to fix this.
Very few other test-suite performance effects were really significant, but
almost all weakly favor this change. However, in light of the issues
highlighted above, I've left the old behavior available via a
command-line flag.
llvm-svn: 242188
This patch corresponds to review:
http://reviews.llvm.org/D9440
It adds a new register class to the PPC back end to contain single precision
values in VSX registers. Additionally, it adds scalar loads and stores for
VSX registers.
llvm-svn: 236755
This patch adds Hardware Transaction Memory (HTM) support supported by ISA 2.07
(POWER8). The intrinsic support is based on GCC one [1], but currently only the
'PowerPC HTM Low Level Built-in Function' are implemented.
The HTM instructions follows the RC ones and the transaction initiation result
is set on RC0 (with exception of tcheck). Currently approach is to create a
register copy from CR0 to GPR and comapring. Although this is suboptimal, since
the branch could be taken directly by comparing the CR0 value, it generates code
correctly on both test and branch and just return value. A possible future
optimization could be elimitate the MFCR instruction to branch directly.
The HTM usage requires a recently newer kernel with PPC HTM enabled. Tested on
powerpc64 and powerpc64le.
This is send along a clang patch to enabled the builtins and option switch.
[1] https://gcc.gnu.org/onlinedocs/gcc/PowerPC-Hardware-Transactional-Memory-Built-in-Functions.html
Phabricator Review: http://reviews.llvm.org/D8247
llvm-svn: 233204
This adds support for the QPX vector instruction set, which is used by the
enhanced A2 cores on the IBM BG/Q supercomputers. QPX vectors are 256 bytes
wide, holding 4 double-precision floating-point values. Boolean values, modeled
here as <4 x i1> are actually also represented as floating-point values
(essentially { -1, 1 } for { false, true }). QPX shares many features with
Altivec and VSX, but is distinct from both of them. One major difference is
that, instead of adding completely-separate vector registers, QPX vector
registers are extensions of the scalar floating-point registers (lane 0 is the
corresponding scalar floating-point value). The operations supported on QPX
vectors mirrors that supported on the scalar floating-point values (with some
additional ones for permutations and logical/comparison operations).
I've been maintaining this support out-of-tree, as part of the bgclang project,
for several years. This is not the entire bgclang patch set, but is most of the
subset that can be cleanly integrated into LLVM proper at this time. Adding
this to the LLVM backend is part of my efforts to rebase bgclang to the current
LLVM trunk, but is independently useful (especially for codes that use LLVM as
a JIT in library form).
The assembler/disassembler test coverage is complete. The CodeGen test coverage
is not, but I've included some tests, and more will be added as follow-up work.
llvm-svn: 230413
Our register allocation has become better recently, it seems, and is now
starting to generate cross-block copies into inflated register classes. These
copies are not transformed into subregister insertions/extractions by the
PPCVSXCopy class, and so need to be handled directly by
PPCInstrInfo::copyPhysReg. The code to do this was *almost* there, but not
quite (it was unnecessarily restricting itself to only the direct
sub/super-register-class case (not copying between, for example, something in
VRRC and the lower-half of VSRC which are super-registers of F8RC).
Triggering this behavior manually is difficult; I'm including two
bugpoint-reduced test cases from the test suite.
llvm-svn: 229457
PPCInstrInfo.cpp has ended up containing several small MI-level passes, and
this is making the file harder to read than necessary. Split out
PPCEarlyReturn into its own source file. NFC.
Now that PPCInstrInfo.cpp does not also contain pass implementations, I hope
that it will be slightly less unwieldy.
llvm-svn: 227775
PPCInstrInfo.cpp has ended up containing several small MI-level passes, and
this is making the file harder to read than necessary. Split out
PPCVSXCopy into its own source file. NFC.
llvm-svn: 227771
PPCInstrInfo.cpp has ended up containing several small MI-level passes, and
this is making the file harder to read than necessary. Split out
PPCVSXFMAMutate into its own source file. NFC.
llvm-svn: 227770
This MI-level pass was necessary when VSX support was first being developed,
specifically, before the ABI code had been updated to use VSX registers for
arguments (the register assignments did not change, in a physical sense, but
the VSX super-registers are now used). Unfortunately, I never went back and
removed this pass after that was done. I believe this code is now effectively
dead.
llvm-svn: 227767
When PPCEarlyReturn, it should really copy implicit ops from the old return
instruction to the new one. This currently does not matter much, because we run
PPCEarlyReturn very late in the pipeline (there is nothing to do DCE on
definitions of those registers). However, for completeness, we should do it
anyway.
Noticed by inspection (and there should be no functional change); thus, no
test case.
llvm-svn: 227763
This re-applies r225808, fixed to avoid problems with SDAG dependencies along
with the preceding fix to ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs.
These problems caused the original regression tests to assert/segfault on many
(but not all) systems.
Original commit message:
This commit does two things:
1. Refactors PPCFastISel to use more of the common infrastructure for call
lowering (this lets us take advantage of this common code for lowering some
common intrinsics, stackmap/patchpoint among them).
2. Adds support for stackmap/patchpoint lowering. For the most part, this is
very similar to the support in the AArch64 target, with the obvious differences
(different registers, NOP instructions, etc.). The test cases are adapted
from the AArch64 test cases.
One difference of note is that the patchpoint call sequence takes 24 bytes, so
you can't use less than that (on AArch64 you can go down to 16). Also, as noted
in the docs, we take the patchpoint address to be the actual code address
(assuming the call is local in the TOC-sharing sense), which should yield
higher performance than generating the full cross-DSO indirect-call sequence
and is likely just as useful for JITed code (if not, we'll change it).
StackMaps and Patchpoints are still marked as experimental, and so this support
is doubly experimental. So go ahead and experiment!
llvm-svn: 225909
This commit does two things:
1. Refactors PPCFastISel to use more of the common infrastructure for call
lowering (this lets us take advantage of this common code for lowering some
common intrinsics, stackmap/patchpoint among them).
2. Adds support for stackmap/patchpoint lowering. For the most part, this is
very similar to the support in the AArch64 target, with the obvious differences
(different registers, NOP instructions, etc.). The test cases are adapted
from the AArch64 test cases.
One difference of note is that the patchpoint call sequence takes 24 bytes, so
you can't use less than that (on AArch64 you can go down to 16). Also, as noted
in the docs, we take the patchpoint address to be the actual code address
(assuming the call is local in the TOC-sharing sense), which should yield
higher performance than generating the full cross-DSO indirect-call sequence
and is likely just as useful for JITed code (if not, we'll change it).
StackMaps and Patchpoints are still marked as experimental, and so this support
is doubly experimental. So go ahead and experiment!
llvm-svn: 225808
We really need a separate 64-bit version of this instruction so that it can be
marked as clobbering LR8 (instead of just LR). No change in functionality
(although the verifier might be slightly happier), however, it is required for
stackmap/patchpoint support. Thus, this will be covered by stackmap test cases
once those are added.
llvm-svn: 225804
On PPC64, we end up with lots of i32 -> i64 zero extensions, not only from all
of the usual places, but also from the ABI, which specifies that values passed
are zero extended. Almost all 32-bit PPC instructions in PPC64 mode are defined
to do *something* to the higher-order bits, and for some instructions, that
action clears those bits (thus providing a zero-extended result). This is
especially common after rotate-and-mask instructions. Adding an additional
instruction to zero-extend the results of these instructions is unnecessary.
This PPCISelDAGToDAG peephole optimization examines these zero-extensions, and
looks back through their operands to see if all instructions will implicitly
zero extend their results. If so, we convert these instructions to their 64-bit
variants (which is an internal change only, the actual encoding of these
instructions is the same as the original 32-bit ones) and remove the
unnecessary zero-extension (changing where the INSERT_SUBREG instructions are
to make everything internally consistent).
llvm-svn: 224169
With VSX enabled, test/CodeGen/PowerPC/recipest.ll exposes a bug in
the FMA mutation pass. If we have a situation where a killed product
register is the same register as the FMA target, such as:
%vreg5<def,tied1> = XSNMSUBADP %vreg5<tied0>, %vreg11, %vreg5,
%RM<imp-use>; VSFRC:%vreg5 F8RC:%vreg11
then the substitution makes no sense. We end up getting a crash when
we try to extend the interval associated with the killed product
register, as there is already a live range for %vreg5 there. This
patch just disables the mutation under those circumstances.
Since recipest.ll generates different code with VMX enabled, I've
modified that test to use -mattr=-vsx. I've borrowed the code from
that test that exposed the bug and placed it in fma-mutate.ll, where
it tests several mutation opportunities including the "bad" one.
llvm-svn: 220290
With VSX enabled, LLVM crashes when compiling
test/CodeGen/PowerPC/fma.ll. I traced this to the liveness test
that's revised in this patch. The interval test is designed to only
work for virtual registers, but in this case the AddendSrcReg is
physical. Since there is already a walk of the MIs between the
AddendMI and the FMA, I added a check for def/kill of the AddendSrcReg
in that loop. At Hal Finkel's request, I converted the liveness test
to an assert restricted to virtual registers.
I've changed the fma.ll test to have VSX and non-VSX variants so we
can test both kinds of multiply-adds.
llvm-svn: 220090
includes handling DIR_PWR8 where appropriate
The P7Model Itinerary is currently tied in for use under the P8Model, and will be updated later.
llvm-svn: 211779