DISubprogram currently has 10 pointer operands, several of which are
often nullptr. This patch reduces the amount of memory allocated by
DISubprogram by rearranging the operands such that containing type,
template params, and thrown types come last, and are only allocated
when they are non-null (or followed by non-null operands).
This patch also eliminates the entirely unused DisplayName operand.
This saves up to 4 pointer operands per DISubprogram. (I tried
measuring the effect on peak memory usage on an LTO link of an X86
llc, but the results were very noisy).
This reapplies r301498 with an attempted workaround for g++.
Differential Revision: https://reviews.llvm.org/D32560
llvm-svn: 301501
DISubprogram currently has 10 pointer operands, several of which are
often nullptr. This patch reduces the amount of memory allocated by
DISubprogram by rearranging the operands such that containing type,
template params, and thrown types come last, and are only allocated
when they are non-null (or followed by non-null operands).
This patch also eliminates the entirely unused DisplayName operand.
This saves up to 4 pointer operands per DISubprogram. (I tried
measuring the effect on peak memory usage on an LTO link of an X86
llc, but the results were very noisy).
llvm-svn: 301498
For Swift we would like to be able to encode the error types that a
function may throw, so the debugger can display them alongside the
function's return value when finish-ing a function.
DWARF defines DW_TAG_thrown_type (intended to be used for C++ throw()
declarations) that is a perfect fit for this purpose. This patch wires
up support for DW_TAG_thrown_type in LLVM by adding a list of thrown
types to DISubprogram.
To offset the cost of the extra pointer, there is a follow-up patch
that turns DISubprogram into a variable-length node.
rdar://problem/29481673
Differential Revision: https://reviews.llvm.org/D32559
llvm-svn: 301489
Commits were:
"Use WeakVH instead of WeakTrackingVH in AliasSetTracker's UnkownInsts"
"Add a new WeakVH value handle; NFC"
"Rename WeakVH to WeakTrackingVH; NFC"
The changes assumed pointers are 8 byte aligned on all architectures.
llvm-svn: 301429
Summary:
I plan to use WeakVH to mean "nulls itself out on deletion, but does
not track RAUW" in a subsequent commit.
Reviewers: dblaikie, davide
Reviewed By: davide
Subscribers: arsenm, mehdi_amini, mcrosier, mzolotukhin, jfb, llvm-commits, nhaehnle
Differential Revision: https://reviews.llvm.org/D32266
llvm-svn: 301424
Remove the temporary, poorly named getSlotSet method which did the same
thing. Also remove getSlotNode, which is a hold-over from when we were
dealing with AttributeSetNode* instead of AttributeSet.
llvm-svn: 301267
Summary:
That API creates a temporary AttributeList to carry an index and a
single AttributeSet. We need to carry the index in addition to the set,
because that is how attribute groups are currently encoded.
NFC
Reviewers: pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32262
llvm-svn: 301245
The DWARF specification knows 3 kinds of non-empty simple location
descriptions:
1. Register location descriptions
- describe a variable in a register
- consist of only a DW_OP_reg
2. Memory location descriptions
- describe the address of a variable
3. Implicit location descriptions
- describe the value of a variable
- end with DW_OP_stack_value & friends
The existing DwarfExpression code is pretty much ignorant of these
restrictions. This used to not matter because we only emitted very
short expressions that we happened to get right by accident. This
patch makes DwarfExpression aware of the rules defined by the DWARF
standard and now chooses the right kind of location description for
each expression being emitted.
This would have been an NFC commit (for the existing testsuite) if not
for the way that clang describes captured block variables. Based on
how the previous code in LLVM emitted locations, DW_OP_deref
operations that should have come at the end of the expression are put
at its beginning. Fixing this means changing the semantics of
DIExpression, so this patch bumps the version number of DIExpression
and implements a bitcode upgrade.
There are two major changes in this patch:
I had to fix the semantics of dbg.declare for describing function
arguments. After this patch a dbg.declare always takes the *address*
of a variable as the first argument, even if the argument is not an
alloca.
When lowering a DBG_VALUE, the decision of whether to emit a register
location description or a memory location description depends on the
MachineLocation — register machine locations may get promoted to
memory locations based on their DIExpression. (Future) optimization
passes that want to salvage implicit debug location for variables may
do so by appending a DW_OP_stack_value. For example:
DBG_VALUE, [RBP-8] --> DW_OP_fbreg -8
DBG_VALUE, RAX --> DW_OP_reg0 +0
DBG_VALUE, RAX, DIExpression(DW_OP_deref) --> DW_OP_reg0 +0
All testcases that were modified were regenerated from clang. I also
added source-based testcases for each of these to the debuginfo-tests
repository over the last week to make sure that no synchronized bugs
slip in. The debuginfo-tests compile from source and run the debugger.
https://bugs.llvm.org/show_bug.cgi?id=32382
<rdar://problem/31205000>
Differential Revision: https://reviews.llvm.org/D31439
llvm-svn: 300522
Add a top-level STRTAB block containing a string table blob, and start storing
strings for module codes FUNCTION, GLOBALVAR, ALIAS, IFUNC and COMDAT in
the string table.
This change allows us to share names between globals and comdats as well
as between modules, and improves the efficiency of loading bitcode files by
no longer using a bit encoding for symbol names. Once we start writing the
irsymtab to the bitcode file we will also be able to share strings between
it and the module.
On my machine, link time for Chromium for Linux with ThinLTO decreases by
about 7% for no-op incremental builds or about 1% for full builds. Total
bitcode file size decreases by about 3%.
As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2017-April/111732.html
Differential Revision: https://reviews.llvm.org/D31838
llvm-svn: 300464
and to expose a handle to represent the actual case rather than having
the iterator return a reference to itself.
All of this allows the iterator to be used with common STL facilities,
standard algorithms, etc.
Doing this exposed some missing facilities in the iterator facade that
I've fixed and required some work to the actual iterator to fully
support the necessary API.
Differential Revision: https://reviews.llvm.org/D31548
llvm-svn: 300032
LLVM makes several assumptions about address space 0. However,
alloca is presently constrained to always return this address space.
There's no real way to avoid using alloca, so without this
there is no way to opt out of these assumptions.
The problematic assumptions include:
- That the pointer size used for the stack is the same size as
the code size pointer, which is also the maximum sized pointer.
- That 0 is an invalid, non-dereferencable pointer value.
These are problems for AMDGPU because alloca is used to
implement the private address space, which uses a 32-bit
index as the pointer value. Other pointers are 64-bit
and behave more like LLVM's notion of generic address
space. By changing the address space used for allocas,
we can change our generic pointer type to be LLVM's generic
pointer type which does have similar properties.
llvm-svn: 299888
This code will need to be taught to handle string tables and it's better if
there is only one copy of it.
Differential Revision: https://reviews.llvm.org/D31829
llvm-svn: 299886
Support for writing this module code was removed in r73220, which was well
before the LLVM 3.0 release, so we do not need to be able to understand it
for backwards compatibility.
Differential Revision: https://reviews.llvm.org/D31563
llvm-svn: 299370
-ffp-contract=fast does not currently work with LTO because it's passed as a
TargetOption to the backend rather than in the IR. This adds it to
FastMathFlags.
This is toward fixing PR25721
Differential Revision: https://reviews.llvm.org/D31164
llvm-svn: 298939
Summary:
The cumulative size of the bitcode files for a very large application
can be huge, particularly with -g. In a distributed build environment,
all of these files must be sent to the remote build node that performs
the thin link step, and this can exceed size limits.
The thin link actually only needs the summary along with a bitcode
symbol table. Until we have a proper bitcode symbol table, simply
stripping the debug metadata results in significant size reduction.
Add support for an option to additionally emit minimized bitcode
modules, just for use in the thin link step, which for now just strips
all debug metadata. I plan to add a cc1 option so this can be invoked
easily during the compile step.
However, care must be taken to ensure that these minimized thin link
bitcode files produce the same index as with the original bitcode files,
as these original bitcode files will be used in the backends.
Specifically:
1) The module hash used for caching is typically produced by hashing the
written bitcode, and we want to include the hash that would correspond
to the original bitcode file. This is because we want to ensure that
changes in the stripped portions affect caching. Added plumbing to emit
the same module hash in the minimized thin link bitcode file.
2) The module paths in the index are constructed from the module ID of
each thin linked bitcode, and typically is automatically generated from
the input file path. This is the path used for finding the modules to
import from, and obviously we need this to point to the original bitcode
files. Added gold-plugin support to take a suffix replacement during the
thin link that is used to override the identifier on the MemoryBufferRef
constructed from the loaded thin link bitcode file. The assumption is
that the build system can specify that the minimized bitcode file has a
name that is similar but uses a different suffix (e.g. out.thinlink.bc
instead of out.o).
Added various tests to ensure that we get identical index files out of
the thin link step.
Reviewers: mehdi_amini, pcc
Subscribers: Prazek, llvm-commits
Differential Revision: https://reviews.llvm.org/D31027
llvm-svn: 298638
Summary:
This class is a list of AttributeSetNodes corresponding the function
prototype of a call or function declaration. This class used to be
called ParamAttrListPtr, then AttrListPtr, then AttributeSet. It is
typically accessed by parameter and return value index, so
"AttributeList" seems like a more intuitive name.
Rename AttributeSetImpl to AttributeListImpl to follow suit.
It's useful to rename this class so that we can rename AttributeSetNode
to AttributeSet later. AttributeSet is the set of attributes that apply
to a single function, argument, or return value.
Reviewers: sanjoy, javed.absar, chandlerc, pete
Reviewed By: pete
Subscribers: pete, jholewinski, arsenm, dschuff, mehdi_amini, jfb, nhaehnle, sbc100, void, llvm-commits
Differential Revision: https://reviews.llvm.org/D31102
llvm-svn: 298393
Summary:
In SamplePGO, if the profile is collected from non-LTO binary, and used to drive ThinLTO, the indirect call promotion may fail because ThinLTO adjusts local function names to avoid conflicts. There are two places of where the mismatch can happen:
1. thin-link prepends SourceFileName to front of FuncName to build the GUID (GlobalValue::getGlobalIdentifier). Unlike instrumentation FDO, SamplePGO does not use the PGOFuncName scheme and therefore the indirect call target profile data contains a hash of the OriginalName.
2. backend compiler promotes some local functions to global and appends .llvm.{$ModuleHash} to the end of the FuncName to derive PromotedFunctionName
This patch tries at the best effort to find the GUID from the original local function name (in profile), and use that in ICP promotion, and in SamplePGO matching that happens in the backend after importing/inlining:
1. in thin-link, it builds the map from OriginalName to GUID so that when thin-link reads in indirect call target profile (represented by OriginalName), it knows which GUID to import.
2. in backend compiler, if sample profile reader cannot find a profile match for PromotedFunctionName, it will try to find if there is a match for OriginalFunctionName.
3. in backend compiler, we build symbol table entry for OriginalFunctionName and pointer to the same symbol of PromotedFunctionName, so that ICP can find the correct target to promote.
Reviewers: mehdi_amini, tejohnson
Reviewed By: tejohnson
Subscribers: llvm-commits, Prazek
Differential Revision: https://reviews.llvm.org/D30754
llvm-svn: 297757
The summary information includes all uses of llvm.type.test and
llvm.type.checked.load intrinsics that can be used to devirtualize calls,
including any constant arguments for virtual constant propagation.
Differential Revision: https://reviews.llvm.org/D29734
llvm-svn: 294795
This is a follow-up to https://reviews.llvm.org/D29349. It turns out
that NeedUpgradeToDIGlobalVariableExpression is always necessary when
we encountered a version==0 record because it may always be referenced
via a list of globals in a DICompileUnit. My tests weren't good enough
to catch this though. To trigger this case, we need much older bitcode
produced by LLVM around version 3.7.
<rdar://problem/30404262>
Differential Revision: https://reviews.llvm.org/D29693
llvm-svn: 294488
The bitcode upgrade for DIGlobalVariable unconditionally wrapped
DIGlobalVariables in a DIGlobalVariableExpression. When a
DIGlobalVariable is referenced by a DIImportedEntity, however, this is
wrong. This patch fixes the bitcode upgrade by deferring the creation
of DIGlobalVariableExpressions until we know the context of the
DIGlobalVariable.
<rdar://problem/30134279>
Differential Revision: https://reviews.llvm.org/D29349
llvm-svn: 294318
This reverts commit r293970.
After more discussion, this belongs to the linker side and
there is no added value to do it at this level.
llvm-svn: 293993
When a symbol is not exported outside of the
DSO, it is can be hidden. Usually we try to internalize
as much as possible, but it is not always possible, for
instance a symbol can be referenced outside of the LTO
unit, or there can be cross-module reference in ThinLTO.
This is a recommit of r293912 after fixing build failures,
and a recommit of r293918 after fixing LLD tests.
Differential Revision: https://reviews.llvm.org/D28978
llvm-svn: 293970
When a symbol is not exported outside of the
DSO, it is can be hidden. Usually we try to internalize
as much as possible, but it is not always possible, for
instance a symbol can be referenced outside of the LTO
unit, or there can be cross-module reference in ThinLTO.
This is a recommit of r293912 after fixing build failures.
Differential Revision: https://reviews.llvm.org/D28978
llvm-svn: 293918
When a symbol is not exported outside of the
DSO, it is can be hidden. Usually we try to internalize
as much as possible, but it is not always possible, for
instance a symbol can be referenced outside of the LTO
unit, or there can be cross-module reference in ThinLTO.
Differential Revision: https://reviews.llvm.org/D28978
llvm-svn: 293912
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html
For reference:
- Public headers should just declare the dump() method but not use
LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MyClass::dump() {
// print stuff to dbgs()...
}
#endif
llvm-svn: 293359
Summary:
MetadataLoader::MetadataLoaderImpl::parseOneMetadata uses
the following construct in a number of places:
```
MetadataList.assignValue(<...>, NextMetadataNo++);
```
There, NextMetadataNo gets incremented, and since the order
of arguments evaluation is not specified, that can happen
before or after other arguments are evaluated.
In a few cases the other arguments indirectly use NextMetadataNo.
For instance, it's
```
MetadataList.assignValue(
GET_OR_DISTINCT(DIModule,
(Context, getMDOrNull(Record[1]),
getMDString(Record[2]), getMDString(Record[3]),
getMDString(Record[4]), getMDString(Record[5]))),
NextMetadataNo++);
```
getMDOrNull calls getMD that uses NextMetadataNo:
```
MetadataList.getMetadataFwdRef(NextMetadataNo);
```
Therefore, the order of evaluation becomes important. That caused
a very subtle LLD crash that only happens if compiled with GCC or
if LLD is built with LTO. In the case if LLD is compiled with Clang
and regular linking mode, everything worked as intended.
This change extracts incrementing of NextMetadataNo outside of
the arguments list to guarantee the correct order of evaluation.
For the record, this has taken 3 days to track to the origin. It all
started with a ThinLTO bot in Chrome not being able to link a target
if debug info is enabled.
Reviewers: pcc, mehdi_amini
Reviewed By: mehdi_amini
Subscribers: aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D29204
llvm-svn: 293291
CFI is using intrinsics that takes MDString as arguments, and this
was broken during lazy-loading of metadata.
Differential Revision: https://reviews.llvm.org/D28916
llvm-svn: 292641
Summary:
Without this, we're stressing the RAUW of unique nodes,
which is a costly operation. This is intended to limit
the number of RAUW, and is very effective on the total
link-time of opt with ThinLTO, before:
real 4m4.587s user 15m3.401s sys 0m23.616s
after:
real 3m25.261s user 12m22.132s sys 0m24.152s
Reviewers: tejohnson, pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28751
llvm-svn: 292420
The change in r291362 was too agressive. We still need to flush at the
end of the block because function local metadata can introduce fwd
ref as well.
(Bootstrap with ThinLTO was broken)
llvm-svn: 291379
Summary:
The issue happens with:
%0 = ....., !tbaa !0
%1 = ....., !tbaa !1
With !0 that references !1.
In this case when loading !0 we generates a temporary for the
operand !1. We now flush it immediately and trigger the load of
!1 before moving on. If we don't we get the temporary when
attaching to %1. This is usually not an issue except that we
eagerly try to update TBAA MDNodes, which is obviously not possible
if we only have a temporary.
Differential Revision: https://reviews.llvm.org/D28423
llvm-svn: 291362
Summary:
Using the linker-supplied list of "preserved" symbols, we can compute
the list of "dead" symbols, i.e. the one that are not reachable from
a "preserved" symbol transitively on the reference graph.
Right now we are using this information to mark these functions as
non-eligible for import.
The impact is two folds:
- Reduction of compile time: we don't import these functions anywhere
or import the function these symbols are calling.
- The limited number of import/export leads to better internalization.
Patch originally by Mehdi Amini.
Reviewers: mehdi_amini, pcc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D23488
llvm-svn: 291177
Summary:
This adds a new summary flag NotEligibleToImport that subsumes
several existing flags (NoRename, HasInlineAsmMaybeReferencingInternal
and IsNotViableToInline). It also subsumes the checking of references
on the summary that was being done during the thin link by
eligibleForImport() for each candidate. It is much more efficient to
do that checking once during the per-module summary build and record
it in the summary.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28169
llvm-svn: 291108
Summary:
This is a relatively simple scheme: we use the index emitted in the
bitcode to avoid loading all the global metadata. Instead we load
the index with their position in the bitcode so that we can load each
of them individually. Materializing the global metadata block in this
condition only triggers loading the named metadata, and the ones
referenced from there (transitively). When materializing a function,
metadata from the global block are loaded lazily as they are
referenced.
Two main current limitations are:
1) Global values other than functions are not materialized on demand,
so we need to eagerly load METADATA_GLOBAL_DECL_ATTACHMENT records
(and their transitive dependencies).
2) When we load a single metadata, we don't recurse on the operands,
instead we use a placeholder or a temporary metadata. Unfortunately
tepmorary nodes are very expensive. This is why we don't have it
always enabled and only for importing.
These two limitations can be lifted in a subsequent improvement if
needed.
With this change, the total link time of opt with ThinLTO and Debug
Info enabled is going down from 282s to 224s (~20%).
Reviewers: pcc, tejohnson, dexonsmith
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28113
llvm-svn: 291027
If this is a problem for anyone (shared_ptr is two pointers in size,
whereas IntrusiveRefCntPtr is 1 - and the ref count control block that
make_shared adds is probably larger than the one int in RefCountedBase)
I'd prefer to address this by adding a lower-overhead version of
shared_ptr (possibly refactoring IntrusiveRefCntPtr into such a thing)
to avoid the intrusiveness - this allows memory ownership to remain
orthogonal to types and at least to me, seems to make code easier to
understand (since no implicit ownership acquisition can happen).
This recommits 291006, reverted in r291007.
llvm-svn: 291016
If this is a problem for anyone (shared_ptr is two pointers in size,
whereas IntrusiveRefCntPtr is 1 - and the ref count control block that
make_shared adds is probably larger than the one int in RefCountedBase)
I'd prefer to address this by adding a lower-overhead version of
shared_ptr (possibly refactoring IntrusiveRefCntPtr into such a thing)
to avoid the intrusiveness - this allows memory ownership to remain
orthogonal to types and at least to me, seems to make code easier to
understand (since no implicit ownership acquisition can happen).
llvm-svn: 291006
As per post-commit review for r289993 (D27775), we can only safely
import a type as a decl if it has an Identifier, as the Name alone
is not enough to be unique across modules.
llvm-svn: 290915
The Bitstream reader and writer are limited to handle a "size_t" at
most, which means that we can't backpatch and read back a 64bits
value on 32 bits platform.
llvm-svn: 290693
This index record the position for each metadata record in
the bitcode, so that the reader will be able to lazy-load
on demand each individual record.
We also make sure that every abbrev is emitted upfront so
that the block can be skipped while reading.
I don't plan to commit this before having the reader
counterpart, but I figured this can be reviewed mostly
independently.
Recommit r290684 (was reverted in r290686 because a test
was broken) after adding a threshold to avoid emitting
the index when unnecessary (little amount of metadata).
This optimization "hides" a limitation of the ability
to backpatch in the bitstream: we can only backpatch
safely when the position has been flushed. So if we emit
an index for one metadata, it is possible that (part of)
the offset placeholder hasn't been flushed and the backpatch
will fail.
Differential Revision: https://reviews.llvm.org/D28083
llvm-svn: 290690
Summary:
This index record the position for each metadata record in
the bitcode, so that the reader will be able to lazy-load
on demand each individual record.
We also make sure that every abbrev is emitted upfront so
that the block can be skipped while reading.
I don't plan to commit this before having the reader
counterpart, but I figured this can be reviewed mostly
independently.
Reviewers: pcc, tejohnson
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28083
llvm-svn: 290684
This makes it explicit what is the exact list to handle, and it
looks much more easy to manipulate and understand that the
previous custom tracking of min/max to express the range where
to look for.
Differential Revision: https://reviews.llvm.org/D28089
llvm-svn: 290507
This is to put the vector into a well defined state. Apparently the state of a
vector after being moved from is valid but unspecified. Found with clang-tidy.
llvm-svn: 290298
Each function summary has an attached list of type identifier GUIDs. The
idea is that during the regular LTO phase we would match these GUIDs to type
identifiers defined by the regular LTO module and store the resolutions in
a top-level "type identifier summary" (which will be implemented separately).
Differential Revision: https://reviews.llvm.org/D27967
llvm-svn: 290280
Also make the summary ref and call graph vectors immutable. This means
a smaller API surface and fewer places to audit for non-determinism.
Differential Revision: https://reviews.llvm.org/D27875
llvm-svn: 290200
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades and a change
to the Bitcode record for DIGlobalVariable, that makes upgrading the
old format unambiguous also for variables without DIExpressions.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 290153
Summary:
When reading the metadata bitcode, create a type declaration when
possible for composite types when we are importing. Doing this in
the bitcode reader saves memory. Also it works naturally in the case
when the type ODR map contains a definition for the same composite type
because it was used in the importing module (buildODRType will
automatically use the existing definition and not create a type
declaration).
For Chromium built with -g2, this reduces the aggregate size of the
generated native object files by 66% (from 31G to 10G). It reduced
the time through the ThinLTO link and backend phases by about 20% on
my machine.
Reviewers: mehdi_amini, dblaikie, aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27775
llvm-svn: 289993
This reverts commit 289920 (again).
I forgot to implement a Bitcode upgrade for the case where a DIGlobalVariable
has not DIExpression. Unfortunately it is not possible to safely upgrade
these variables without adding a flag to the bitcode record indicating which
version they are.
My plan of record is to roll the planned follow-up patch that adds a
unit: field to DIGlobalVariable into this patch before recomitting.
This way we only need one Bitcode upgrade for both changes (with a
version flag in the bitcode record to safely distinguish the record
formats).
Sorry for the churn!
llvm-svn: 289982
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
This reapplies r289902 with additional testcase upgrades.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289920
This patch implements PR31013 by introducing a
DIGlobalVariableExpression that holds a pair of DIGlobalVariable and
DIExpression.
Currently, DIGlobalVariables holds a DIExpression. This is not the
best way to model this:
(1) The DIGlobalVariable should describe the source level variable,
not how to get to its location.
(2) It makes it unsafe/hard to update the expressions when we call
replaceExpression on the DIGLobalVariable.
(3) It makes it impossible to represent a global variable that is in
more than one location (e.g., a variable with multiple
DW_OP_LLVM_fragment-s). We also moved away from attaching the
DIExpression to DILocalVariable for the same reasons.
<rdar://problem/29250149>
https://llvm.org/bugs/show_bug.cgi?id=31013
Differential Revision: https://reviews.llvm.org/D26769
llvm-svn: 289902
At least the plugin used by the LibreOffice build
(<https://wiki.documentfoundation.org/Development/Clang_plugins>) indirectly
uses those members (through inline functions in LLVM/Clang include files in turn
using them), but they are not exported by utils/extract_symbols.py on Windows,
and accessing data across DLL/EXE boundaries on Windows is generally
problematic.
Differential Revision: https://reviews.llvm.org/D26671
llvm-svn: 289647
Summary:
I'm planning on changing the way we load metadata to enable laziness.
I'm getting lost in this gigantic files, and gigantic class that is the bitcode
reader. This is a first toward splitting it in a few coarse components that
are more easily understandable.
Reviewers: pcc, tejohnson
Subscribers: mgorny, llvm-commits, dexonsmith
Differential Revision: https://reviews.llvm.org/D27646
llvm-svn: 289461
Summary:
Compiling with GCC 5 or later can fail with a bogus error "constructor
required before non-static data member for
llvm::ValueEnumerator::MDRange::First has been parsed".
This was originally fixed upstream in GCC PR 70528, but later this fix
was reverted, and released versions of GCC still show the bogus error.
To work around this, replace MDRange's declaration of a default
constructor with a definition.
Reviewers: dexonsmith, rsmith, rivanvx
Subscribers: llvm-commits, dim, dexonsmith
Differential Revision: https://reviews.llvm.org/D18730
llvm-svn: 289454
so we can stop using DW_OP_bit_piece with the wrong semantics.
The entire back story can be found here:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20161114/405934.html
The gist is that in LLVM we've been misinterpreting DW_OP_bit_piece's
offset field to mean the offset into the source variable rather than
the offset into the location at the top the DWARF expression stack. In
order to be able to fix this in a subsequent patch, this patch
introduces a dedicated DW_OP_LLVM_fragment operation with the
semantics that we used to apply to DW_OP_bit_piece, which is what we
actually need while inside of LLVM. This patch is complete with a
bitcode upgrade for expressions using the old format. It does not yet
fix the DWARF backend to use DW_OP_bit_piece correctly.
Implementation note: We discussed several options for implementing
this, including reserving a dedicated field in DIExpression for the
fragment size and offset, but using an custom operator at the end of
the expression works just fine and is more efficient because we then
only pay for it when we need it.
Differential Revision: https://reviews.llvm.org/D27361
rdar://problem/29335809
llvm-svn: 288683
The assertions were wrong; we need to call getEncodingData() on the element,
not the array. While here, simplify the skipRecord() implementation for Fixed
and Char6 arrays. This is tested by the code I added to llvm-bcanalyzer
which makes sure that we can skip any record.
Differential Revision: https://reviews.llvm.org/D27241
llvm-svn: 288315
This interface allows clients to write multiple modules to a single
bitcode file. Also introduce the llvm-cat utility which can be used
to create a bitcode file containing multiple modules.
Differential Revision: https://reviews.llvm.org/D26179
llvm-svn: 288195
We now expect each module's identification block to appear immediately before
the module block. Any module block that appears without an identification block
immediately before it is interpreted as if it does not have a module block.
Also change the interpretation of VST and function offsets in bitcode.
The offset is always taken as relative to the start of the identification
(or module if not present) block, minus one word. This corresponds to the
historical interpretation of offsets, i.e. relative to the start of the file.
These changes allow for bitcode modules to be concatenated by copying bytes.
Differential Revision: https://reviews.llvm.org/D27184
llvm-svn: 288098
This patch updates a bunch of places where add_dependencies was being explicitly called to add dependencies on intrinsics_gen to instead use the DEPENDS named parameter. This cleanup is needed for a patch I'm working on to add a dependency debugging mode to the build system.
llvm-svn: 287206
This restores the rest of r286297 (part was restored in r286475).
Specifically, it restores the part requiring adding a dependency from
the Analysis to Object library (downstream use changed to correctly
model split BitReader vs BitWriter libraries).
Original description of this part of patch follows:
Module level asm may also contain defs of values. We need to prevent
export of any refs to local values defined in module level asm (e.g. a
ref in normal IR), since that also requires renaming/promotion of the
local. To do that, the summary index builder looks at all values in the
module level asm string that are not marked Weak or Global, which is
exactly the set of locals that are defined. A summary is created for
each of these local defs and flagged as NoRename.
This required adding handling to the BitcodeWriter to look at GV
declarations to see if they have a summary (rather than skipping them
all).
Finally, added an assert to IRObjectFile::CollectAsmUndefinedRefs to
ensure that an MCAsmParser is available, otherwise the module asm parse
would silently fail. Initialized the asm parser in the opt tool for use
in testing this fix.
Fixes PR30610.
llvm-svn: 286844
Summary:
The change in r285513 to prevent exporting of locals used in
inline asm added all locals in the llvm.used set to the reference
set of functions containing inline asm. Since these locals were marked
NoRename, this automatically prevented importing of the function.
Unfortunately, this caused an explosion in the summary reference lists
in some cases. In my particular example, it happened for a large protocol
buffer generated C++ file, where many of the generated functions
contained an inline asm call. It was exacerbated when doing a ThinLTO
PGO instrumentation build, where the PGO instrumentation included
thousands of private __profd_* values that were added to llvm.used.
We really only need to include a single llvm.used local (NoRename) value
in the reference list of a function containing inline asm to block it
being imported. However, it seems cleaner to add a flag to the summary
that explicitly describes this situation, which is what this patch does.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26402
llvm-svn: 286840
Summary:
This patch adds explicit `(void)` casts to discarded `release()` calls to suppress -Wunused-result.
This patch fixes *all* warnings are generated as a result of [applying `[[nodiscard]]` within libc++](https://reviews.llvm.org/D26596).
Similar fixes were applied to Clang in r286796.
Reviewers: chandlerc, dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26598
llvm-svn: 286797
The functions getBitcodeTargetTriple(), isBitcodeContainingObjCCategory(),
getBitcodeProducerString() and hasGlobalValueSummary() now return errors
via their return value rather than via the diagnostic handler.
To make this work, re-implement these functions using non-member functions
so that they can be used without the LLVMContext required by BitcodeReader.
Differential Revision: https://reviews.llvm.org/D26532
llvm-svn: 286623
Summary:
Split ReaderWriter.h which contains the APIs into both the BitReader and
BitWriter libraries into BitcodeReader.h and BitcodeWriter.h.
This is to address Chandler's concern about sharing the same API header
between multiple libraries (BitReader and BitWriter). That concern is
why we create a single bitcode library in our downstream build of clang,
which led to r286297 being reverted as it added a dependency that
created a cycle only when there is a single bitcode library (not two as
in upstream).
Reviewers: mehdi_amini
Subscribers: dlj, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D26502
llvm-svn: 286566