This was implicitly assuming the branch instruction was the next after
the pseudo. It's possible for another non-terminator instruction to be
inserted between the intrinsic and the branch, so adjust the insertion
point. Fixes a non-terminator after terminator verifier error (which
without the verifier, manifested itself as an infinite loop in
analyzeBranch much later on).
Put AND before ADD in LegalizerHelper::lowerFPTRUNC_F64_TO_F16
in order to match algorithm from AMDGPUTargetLowering::LowerFP_TO_FP16.
Differential Revision: https://reviews.llvm.org/D81666
The baffling thing is this passed the OpenCL conformance test for
32-bit integer divisions, but only failed in the 32-bit path of
BypassSlowDivisions for the 64-bit tests.
Summary:
Make use of both the - (1) clustered bytes and (2) cluster length, to decide on
the max number of mem ops that can be clustered. On an average, when loads
are dword or smaller, consider `5` as max threshold, otherwise `4`. This heuristic
is purely based on different experimentation conducted, and there is no analytical
logic here.
Reviewers: foad, rampitec, arsenm, vpykhtin
Reviewed By: foad, rampitec
Subscribers: kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, Anastasia, t-tye, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81085
The update_*test_checks scripts miss new stuff added at the end of
lines. Regenerate checks so the new mode register operands don't show
up in the diff of a future patch.
The annoying behavior where the output is different due to the
legality check struck again, plus the subtarget predicate wasn't
really correctly set for DS FP atomics.
Some of the FP min/max instructions seem to be in the gfx6/gfx7
manuals, but IIRC this might have been one of the cases where the
manual got ahead of the actual hardware support, but I've left these
as-is for now since the assembler tests seem to expect them.
The current set is an incomprehensible mess riddled with ordering
hacks for various limitations in the legalizer at the time of writing,
many of which have been fixed. This takes a very small step in
correcting this.
The core first change is to start checking for fully legal cases
first, rather than trying to figure out all of the actions that could
need to be performed. It's recommended to check the legal cases first
for faster legality checks in the common case. This still has a table
listing some common cases, but it needs measuring whether this really
helps or not.
More significantly, stop trying to allow any arbitrary type with a
legal bitwidth as a legal memory type, and start using the bitcast
legalize action for them. Allowing loads of these weird vector types
produced new burdens we don't need for handling all of the
legalization artifacts. Unlike the SelectionDAG handling, this is
still not casting 64 or 16-bit element vectors to 32-bit
vectors. These cases should still be handled by increasing/decreasing
the number of 16-bit elements. This is primarily to fix 8-bit element
vectors.
Another change is to stop trying to handle the load-widening based on
a higher alignment. We should still do this, but the way it was
handled wasn't really correct. We really need to modify the MMO's size
at the same time, and not just increase the result type. The
LegalizerHelper does not do this, and I think this would really
require a separate WidenMemory action (or to add a memory action
payload to the LegalizeMutation). These will now fail to legalize.
The structure of the legalizer rules makes writing concise rules here
difficult. It would be easier if the same function could answer the
query the query, and report the action to perform at the same
time. Instead these two are split into distinct predicate and action
functions. This is mostly tolerable for other cases, but the
load/store rules get pretty complicated so it's difficult to keep two
versions of these functions in sync.
Just computing the alignment makes sense without caring about the
general known bits, such as for non-integral pointers. Separate the
two and start calling into the TargetLowering hooks for frame indexes.
Start calling the TargetLowering implementation for FrameIndexes,
which improves the AMDGPU matching for stack addressing modes. Also
introduce a new hook for returning known alignment of target
instructions. For AMDGPU, it would be useful to report the known
alignment implied by certain intrinsic calls.
Also stop using MaybeAlign.
The AMDGPU lowering for unconstrained G_FDIV sometimes needs to
introduce a mode switch in the middle, so it's helpful to have
constrained instructions available to legalize this. Right now nothing
is preventing reordering of the mode switch with the other
instructions in the expansion.
The pass which infers when it's legal to load a global address space
as SMRD was only considering amdgpu_kernel, and ignoring the shader
entry type calling conventions.
Summary:
Combine unmerge(trunc) to enable other merge combines.
Without this combine, the scalar unmerge(trunc(merge))
pattern cannot be combined and easily lead to
hard-to-legalize merge/unmerge artifacts.
Reviewed By: arsenm
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79567
This is a custom inserter because it was less work than teaching
tablegen a way to indicate that it is sometimes OK to have a no side
effect instruction in the output of a side effecting pattern.
The asm is needed to look like a read of the mode register to prevent
it from being deleted. However, there seems to be a bug where the mode
register def instructions are moved across the asm sideeffect by the
post-RA scheduler.
Another oddity is the immediate is formatted differently between
s_denorm_mode and s_round_mode.
We do not have register classes for all possible vector
sizes, so round it up for extract vector element.
Also fixes selection of G_MERGE_VALUES when vectors are
not a power of two.
This has required to refactor getRegSplitParts() in way
that it can handle not just power of two vectors.
Ideally we would like RegSplitParts to be generated by
tablegen.
Differential Revision: https://reviews.llvm.org/D80457
This is the groundwork required to implement strictfp. For now, this
should be NFC for regular instructoins (many instructions just gain an
extra use of a reserved register). Regalloc won't rematerialize
instructions with reads of physical registers, but we were suffering
from that anyway with the exec reads.
Should add it for all the related FP uses (possibly with some
extras). I did not add it to either the gpr index mode instructions
(or every single VALU instruction) since it's a ridiculous feature
already modeled as an arbitrary side effect.
Also work towards marking instructions with FP exceptions. This
doesn't actually set the bit yet since this would start to change
codegen. It seems nofpexcept is currently not implied from the regular
IR FP operations. Add it to some MIR tests where I think it might
matter.
I'm guessing this was a holdover from when 0 was an invalid stack
pointer, but surprised nobody has discovered this before.
Also don't allow offset folding for -1 pointers, since it looks weird
to partially fold this.
I consider this to be a hack, since we probably should not mark any
16-bit extract as legal, and require all extracts to be done on
multiples of 32. There are quite a few more battles to fight in the
legalizer for sub-dword vectors, so just select this for now so we can
pass OpenCL conformance without crashing.
Also fix the same assert for G_INSERTs. Unlike G_EXTRACT there's not a
trivial way to select this so just fail on it.
Confusingly, these were unrelated and had different semantics. The
G_PTR_MASK instruction predates the llvm.ptrmask intrinsic, but has a
different format. G_PTR_MASK only allows clearing the low bits of a
pointer, and only a constant number of bits. The ptrmask intrinsic
allows an arbitrary mask. Replace G_PTR_MASK to match the intrinsic.
Only selects the cases that look like the old instruction. More work
is needed to select the general case. Also new legalization code is
still needed to deal with the case where the incoming mask size does
not match the pointer size, which has a specified behavior in the
langref.
This is currently missing most of the hard parts to lower correctly,
so disable it for now. This fixes at least one OpenCL conformance test
and allows it to pass with fallback. Hide this behind an option for
now.
Unlike SelectionDAGBuilder, IRTranslator omits the unconditional
branch in fallthrough cases. Confusingly, the control flow pseudos
function in the opposite way the intrinsics are used, and the branch
targets always need to be swapped. We're inverting the target blocks,
so we need to figure out the old fallthrough block and insert a branch
to the original unconditional branch target.