Clang has builtin function '__builtin_isnan', which implements C
library function 'isnan'. This function now is implemented entirely in
clang codegen, which expands the function into set of IR operations.
There are three mechanisms by which the expansion can be made.
* The most common mechanism is using an unordered comparison made by
instruction 'fcmp uno'. This simple solution is target-independent
and works well in most cases. It however is not suitable if floating
point exceptions are tracked. Corresponding IEEE 754 operation and C
function must never raise FP exception, even if the argument is a
signaling NaN. Compare instructions usually does not have such
property, they raise 'invalid' exception in such case. So this
mechanism is unsuitable when exception behavior is strict. In
particular it could result in unexpected trapping if argument is SNaN.
* Another solution was implemented in https://reviews.llvm.org/D95948.
It is used in the cases when raising FP exceptions by 'isnan' is not
allowed. This solution implements 'isnan' using integer operations.
It solves the problem of exceptions, but offers one solution for all
targets, however some can do the check in more efficient way.
* Solution implemented by https://reviews.llvm.org/D96568 introduced a
hook 'clang::TargetCodeGenInfo::testFPKind', which injects target
specific code into IR. Now only SystemZ implements this hook and it
generates a call to target specific intrinsic function.
Although these mechanisms allow to implement 'isnan' with enough
efficiency, expanding 'isnan' in clang has drawbacks:
* The operation 'isnan' is hidden behind generic integer operations or
target-specific intrinsics. It complicates analysis and can prevent
some optimizations.
* IR can be created by tools other than clang, in this case treatment
of 'isnan' has to be duplicated in that tool.
Another issue with the current implementation of 'isnan' comes from the
use of options '-ffast-math' or '-fno-honor-nans'. If such option is
specified, 'fcmp uno' may be optimized to 'false'. It is valid
optimization in general, but it results in 'isnan' always returning
'false'. For example, in some libc++ implementations the following code
returns 'false':
std::isnan(std::numeric_limits<float>::quiet_NaN())
The options '-ffast-math' and '-fno-honor-nans' imply that FP operation
operands are never NaNs. This assumption however should not be applied
to the functions that check FP number properties, including 'isnan'. If
such function returns expected result instead of actually making
checks, it becomes useless in many cases. The option '-ffast-math' is
often used for performance critical code, as it can speed up execution
by the expense of manual treatment of corner cases. If 'isnan' returns
assumed result, a user cannot use it in the manual treatment of NaNs
and has to invent replacements, like making the check using integer
operations. There is a discussion in https://reviews.llvm.org/D18513#387418,
which also expresses the opinion, that limitations imposed by
'-ffast-math' should be applied only to 'math' functions but not to
'tests'.
To overcome these drawbacks, this change introduces a new IR intrinsic
function 'llvm.isnan', which realizes the check as specified by IEEE-754
and C standards in target-agnostic way. During IR transformations it
does not undergo undesirable optimizations. It reaches instruction
selection, where is lowered in target-dependent way. The lowering can
vary depending on options like '-ffast-math' or '-ffp-model' so the
resulting code satisfies requested semantics.
Differential Revision: https://reviews.llvm.org/D104854
This commit contains two mildly separate concepts.
First, sending out reviews for things like this is a bit of a
complicated endeavor, since the reviewer list is relatively long, and I
generally rely on prior CLs in this area to find an authoritative list.
Life's quite a bit easier if phab usernames are readily available on the
doc. So part 1 is making those available.
Second, it seems to me that, at the moment, Phabricator makes the most
sense for membership changes (incl. security group nominations). My
reasoning for this is detailed in the diff, and to some extent in
comment #1 of this bug
<https://bugs.chromium.org/p/llvm/issues/detail?id=12#c1>. This change
adds prose to recommend the use of Phabricator for nominations as a
result.
Differential Revision: https://reviews.llvm.org/D106917
D45024 renamed the field in `DISubprogram` from `variables:` to
`retainedNodes:`. Some of the docs were updated in D89082 but this
updates the rest.
Reviewed By: scott.linder
Differential Revision: https://reviews.llvm.org/D106926
Proposed alternative to D105338.
This is ugly, but short-term I think it's the best way forward: first,
let's formalize the hacks into a coherent model. Then we can consider
extensions of that model (we could have different flavors of volatile
with different rules).
Differential Revision: https://reviews.llvm.org/D106309
* ELF supports `nodeduplicate`.
* ELF calls the concept "section group". `GRP_COMDAT` emulates the PE COMDAT deduplication feature.
* "COMDAT group" is an ELF term. Avoid it for PE/COFF.
* WebAssembly supports comdat but only supports the `any` selection kind. https://bugs.llvm.org/show_bug.cgi?id=50531
* A comdat must be included or omitted as a unit. Both the compiler and the linker must obey this rule.
* A global object can be a member of at most one comdat.
* COFF requires a non-local linkage for non-`nodeduplicate` selection kinds.
* llvm.global_ctors/.llvm.global_dtors: if the third field is used on ELF, it must reference a global variable or function in a comdat
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D106300
In the textual format, `noduplicates` means no COMDAT/section group
deduplication is performed. Therefore, if both sets of sections are retained, and
they happen to define strong external symbols with the same names,
there will be a duplicate definition linker error.
In PE/COFF, the selection kind lowers to `IMAGE_COMDAT_SELECT_NODUPLICATES`.
The name describes the corollary instead of the immediate semantics. The name
can cause confusion to other binary formats (ELF, wasm) which have implemented/
want to implement the "no deduplication" selection kind. Rename it to be clearer.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D106319
As discussed on D105251, currently the compiler does not support
multiple metadata attachments on instructions having the same
identifier, whereas it does for global objects. Note this in the
Language Reference manual for clarity.
See D105251 for discussions of history behind this divergence, and the
complexities and possible approaches of adding this support to
instructions in the future.
Differential Revision: https://reviews.llvm.org/D106304
Use the elementtype attribute introduced in D105407 for the
llvm.preserve.array/struct.index intrinsics. It carries the
element type of the GEP these intrinsics effectively encode.
This patch:
* Adds a verifier check that the attribute is required.
* Adds it in the IRBuilder methods for these intrinsics.
* Autoupgrades old bitcode without the attribute.
* Updates the lowering code to use the attribute rather than
the pointer element type.
* Updates lots of tests to specify the attribute.
* Adds -force-opaque-pointers to the intrinsic-array.ll test
to demonstrate they work now.
https://reviews.llvm.org/D106184
For example, I need this lately in my CI config:
LIT_XFAIL_NOT='libomptarget :: nvptx64-nvidia-cuda :: unified_shared_memory/api.c'
That test specifies an XFAIL directive, but I get an XPASS result.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D106022
We can build it with -Werror=global-constructors now. This helps
in situation where libSupport is embedded as a shared library,
potential with dlopen/dlclose scenario, and when command-line
parsing or other facilities may not be involved. Avoiding the
implicit construction of these cl::opt can avoid double-registration
issues and other kind of behavior.
Reviewed By: lattner, jpienaar
Differential Revision: https://reviews.llvm.org/D105959
We can build it with -Werror=global-constructors now. This helps
in situation where libSupport is embedded as a shared library,
potential with dlopen/dlclose scenario, and when command-line
parsing or other facilities may not be involved. Avoiding the
implicit construction of these cl::opt can avoid double-registration
issues and other kind of behavior.
Reviewed By: lattner, jpienaar
Differential Revision: https://reviews.llvm.org/D105959
We can build it with -Werror=global-constructors now. This helps
in situation where libSupport is embedded as a shared library,
potential with dlopen/dlclose scenario, and when command-line
parsing or other facilities may not be involved. Avoiding the
implicit construction of these cl::opt can avoid double-registration
issues and other kind of behavior.
Reviewed By: lattner, jpienaar
Differential Revision: https://reviews.llvm.org/D105959
This adds an elementtype(<ty>) attribute, which can be used to
attach an element type to a pointer typed argument. It is similar
to byval/byref in purpose, but unlike those does not carry any
specific semantics by itself. However, certain intrinsics may
require it and interpret it in specific ways.
The in-tree use cases for this that I'm currently aware of are:
call ptr @llvm.preserve.array.access.index.p0.p0(ptr elementtype(%ty) %base, i32 %dim, i32 %index)
call ptr @llvm.preserve.struct.access.index.p0.p0(ptr elementtype(%ty) %base, i32 %gep_index, i32 %di_index)
call token @llvm.experimental.gc.statepoint.p0(i64 0, i32 0, ptr elementtype(void ()) @foo, i32 0, i32 0, i32 0, i32 0, ptr addrspace(1) %obj)
Notably, the gc.statepoint case needs a function as element type,
in which case the workaround of adding a separate %ty undef
argument would not work, as arguments cannot be unsized.
Differential Revision: https://reviews.llvm.org/D105407
This breaks out some (more) common llvm-specific
variables. Controlling the subprojects and target architectures, along
with clues about restricting build parallelism when linking. 'more
common' is somewhat subjective, of course.
Differential Revision: https://reviews.llvm.org/D105822
The CMake community Wiki has been moved to the [[ https://gitlab.kitware.com/cmake/community/wikis/home | Kitware GitLab Instance ]].
Also, the original anchor for `Information how to set up various cross compiling toolchains` section might not work as expected. The original content is now being collapsed, so browser won't navigate to the right section directly.
Hence, I think it might be better to provide the section name instead of `this section` with link to help readers find the right section by themselves.
Reviewed By: void
Differential Revision: https://reviews.llvm.org/D104996
This new MIR pass removes redundant DBG_VALUEs.
After the register allocator is done, more precisely, after
the Virtual Register Rewriter, we end up having duplicated
DBG_VALUEs, since some virtual registers are being rewritten
into the same physical register as some of existing DBG_VALUEs.
Each DBG_VALUE should indicate (at least before the LiveDebugValues)
variables assignment, but it is being clobbered for function
parameters during the SelectionDAG since it generates new DBG_VALUEs
after COPY instructions, even though the parameter has no assignment.
For example, if we had a DBG_VALUE $regX as an entry debug value
representing the parameter, and a COPY and after the COPY,
DBG_VALUE $virt_reg, and after the virtregrewrite the $virt_reg gets
rewritten into $regX, we'd end up having redundant DBG_VALUE.
This breaks the definition of the DBG_VALUE since some analysis passes
might be built on top of that premise..., and this patch tries to fix
the MIR with the respect to that.
This first patch performs bacward scan, by trying to detect a sequence of
consecutive DBG_VALUEs, and to remove all DBG_VALUEs describing one
variable but the last one:
For example:
(1) DBG_VALUE $edi, !"var1", ...
(2) DBG_VALUE $esi, !"var2", ...
(3) DBG_VALUE $edi, !"var1", ...
...
in this case, we can remove (1).
By combining the forward scan that will be introduced in the next patch
(from this stack), by inspecting the statistics, the RemoveRedundantDebugValues
removes 15032 instructions by using gdb-7.11 as a testbed.
Differential Revision: https://reviews.llvm.org/D105279
Currently, if target of s_branch instruction is in another section, it will fail with the error of undefined label. Although in this case, the label is not undefined but present in another section. This patch tries to handle this issue. So while handling fixup_si_sopp_br fixup in getRelocType, if the target label is undefined we issue an error as before. If it is defined, a new relocation type R_AMDGPU_REL16 is returned.
This issue has been reported in https://gcc.gnu.org/bugzilla/show_bug.cgi?id=100181 and https://bugs.llvm.org/show_bug.cgi?id=45887. Before https://reviews.llvm.org/D79943, we used to get an crash for this scenario. The crash is fixed now but the we still get an undefined label error. Jumps to other section can arise with hold/cold splitting.
A patch to handle the relocation in lld will follow shortly.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D105760
Users should generally observe no difference as long as they don't use
unintended option forms. Behavior changes:
* `-t=d` is removed. Use `-t d` instead.
* `--demangle=false` and `--demangle=0` cannot be used. Omit the option or use `--no-demangle`. Other flag-style options don't have `--no-` forms.
* `--help-list` is removed. This is a `cl::` specific option.
* llvm-readobj now supports grouped short options as well.
* `--color` is removed. This is generally not useful (only apply to errors/warnings) but was inherited from Support.
Some adjustment to the canonical forms
(usually from GNU readelf; currently llvm-readobj has too many redundant aliases):
* --dyn-syms is canonical. --dyn-symbols is a hidden alias
* --file-header is canonical. --file-headers is a hidden alias
* --histogram is canonical. --elf-hash-histogram is a hidden alias
* --relocs is canonical. --relocations is a hidden alias
* --section-groups is canonical. --elf-section-groups is a hidden alias
OptTable avoids global option collision if we decide to support multiplexing for binary utilities.
* Most one-dash long options are still supported. `-dt, -sd, -st, -sr` are dropped due to their conflict with grouped short options.
* `--section-mapping=false` (D57365) is strange but is kept for now.
* Many `cl::opt` variables were unnecessarily external. I added `static` whenever appropriate.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D105532
In review discussion on D104322, Eli and Roman quite reasonable raised concerns about the LangRef not really providing a precise definition for inttoptr/ptrtoint on non-integral types. These had previously been disallowed, but I'd pragmatically allowed them in ac81cb7e6. This is my attempt to improve the situation.
Differential Revision: https://reviews.llvm.org/D104547
The documentation for the AMDGPU assembler's examples don't show the
.args section, which, if ommitted, will cause arguments to silently
not be passed into the kernel. This commit fixes this issue.
Reviewed By: #amdgpu, scott.linder
Differential Revision: https://reviews.llvm.org/D105222
Part of https://lists.llvm.org/pipermail/llvm-dev/2021-July/151622.html
"Binary utilities: switch command line parsing from llvm::cl to OptTable"
* `--totals=false` and `--totals=0` cannot be used. Omit the option.
* `--help-list` is removed. This is a `cl::` specific option.
OptTable avoids global option collision if we decide to support multiplexing for binary utilities.
Note: because the tool is simple, and its long options are uncommon, I just drop
the one-dash forms except `-arch <value>` (Darwin style).
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D105598
Similar to D104889. The tool is very simple and its long options are uncommon,
so just drop the one-dash form in this patch.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D105605
A change in the API happened as per http://reviews.llvm.org/D89463
(latest related commit b9e2b59680)
but the RST documentation was not updated to match this at that time.
Notably, a global variable with the metadata should generally not be referenced
by a function function. E.g. -fstack-size-section usage is fine, but
-fsanitize-coverage= used to have a linker GC problem (fixed by D97430).
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D104933
Part of https://lists.llvm.org/pipermail/llvm-dev/2021-July/151622.html
"Binary utilities: switch command line parsing from llvm::cl to OptTable"
Users should generally observe no difference as long as they only use intended
option forms. Behavior changes:
* `-t=d` is removed. Use `-t d` instead.
* `--demangle=0` cannot be used. Omit the option or use `--no-demangle` instead.
* `--help-list` is removed. This is a `cl::` specific option.
Note:
* `-t` diagnostic gets improved.
* This patch avoids cl::opt collision if we decide to support multiplexing for binary utilities
* One-dash long options are still supported.
* The `-s` collision (`-s segment section` for Mach-O) is unfortunate. `-s` means `--print-armap` in GNU nm.
* This patch removes the last `cl::multi_val` use case from the `llvm/lib/Support/CommandLine.cpp` library
`-M` (`--print-armap`), `-U` (`--defined-only`), and `-W` (`--no-weak`)
are now deprecated. They could conflict with future GNU nm options.
(--print-armap has an existing alias -s, so GNU will unlikely add a new one.
--no-weak (not in GNU nm) is rarely used anyway.)
`--just-symbol-name` is now deprecated in favor of
`--format=just-symbols` and `-j`.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D105330
Set informational fields in the .shader_functions table.
Also correct the documentation, .scratch_memory_size and .lds_size are
integers.
Differential Revision: https://reviews.llvm.org/D105116
Some behavior changes:
* `-t=d` is removed. Use `-t d` instead.
* one-dash long options like `-all` are supported. Use `--all` instead.
* `--all=0` or `--all=false` cannot be used. (Note: `--all` is silently ignored anyway)
* `--help-list` is removed. This is a `cl::` specific option.
Nobody is likely leveraging any of the above.
Advantages:
* `-t` diagnostic gets improved.
* in the absence of `HideUnrelatedOptions`, `--help` will not list unrelated options if linking against libLLVM-13git.so or linker GC is not used.
* Decrease the probability of cl::opt collision if we do decide to support multiplexing
Note: because the tool is so simple, used more for forensics instead of a building
tool, and its long options are unlikely used in one-dash form, I just drop the
one-dash form in this patch.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D104889
Summary: The patch adds the StringTable dumping to
llvm-readobj. Currently only XCOFF is supported.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D104613
This reverts commit 8cd35ad854.
It breaks `TestMembersAndLocalsWithSameName.py` on GreenDragon and
Mikael Holmén points out in D104827 that bitcode files created with the
patch cannot be parsed with binaries built before it.
While this should not matter for most architectures (where the program
address space is 0), it is important for CHERI (and therefore Arm Morello).
We use address space 200 for all of our code pointers and without this
change we assert in the SelectionDAG handling of BlockAddress nodes.
It is also useful for AVR: previously programs targeting
AVR that attempt to read their own machine code
via a pointer to a label would instead read from RAM
using a pointer relative to the the start of program flash.
Reviewed By: dylanmckay, theraven
Differential Revision: https://reviews.llvm.org/D48803
The new documentation entry gives an example use case from
libomptarget.
Reviewed By: yln, jhenderson, davezarzycki
Differential Revision: https://reviews.llvm.org/D105208
Based on the discussion in PR50922, minor changes have been done to properly
output a valid JSON. Removed "not implemented" keys.
Differential Revision: https://reviews.llvm.org/D105064
This patch augments Lit with the ability to parse regular expressions
in boolean expressions. This includes REQUIRES:, XFAIL:, UNSUPPORTED:,
and all other special Lit markup that evaluates to a boolean expression.
Regular expressions can be specified by enclosing them in {{...}},
similarly to how FileCheck handles such regular expressions. The regular
expression can either be on its own, or it can be part of an identifier.
For example, a match expression like {{.+}}-apple-darwin{{.+}} would match
the following variables:
x86_64-apple-darwin20.0
arm64-apple-darwin20.0
arm64-apple-darwin22.0
etc...
In the long term, this could be used to remove the need to handle the
target triple specially when parsing boolean expressions.
Differential Revision: https://reviews.llvm.org/D104572
Update AMDGPU gfx90a memory model to make coarse grain memory allocations
consistent when fine grained system scope atomic acquire and release is
performed.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D105137
llvm-readobj is an internal testing tool for binary formats. Its output and
command line options do not need to be stable. It isn't supposed to be part of a
build process.
llvm-readelf was created as a user-facing utility and its interface intends to
be compatible with GNU readelf (unless there are good reasons not to).
The two tools have mostly compatible options. -s and -t are noticeable
exceptions due to history. I think the cost of keeping the inconsistency
overweighs the little history-compatible benefit and hinders transition from
cl::opt to OptTable, so let's change it.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D105055
Similar to
commit bc044a88ee ("[Inline] prevent inlining on stack protector mismatch")
The noprofile function attribute is meant to prevent compiler
instrumentation from being inserted into a function. Inlining may defeat
the developer's intent. If the caller and callee don't either BOTH have
the attribute or BOTH lack the attribute, suppress inline substitution.
This matches behavior being proposed in GCC:
https://gcc.gnu.org/pipermail/gcc-patches/2021-June/573511.htmlhttps://gcc.gnu.org/bugzilla/show_bug.cgi?id=80223
Add LangRef entry for noprofile fn attr, similar to text added in D93422
and D104944.
Reviewed By: MaskRay, melver, phosek
Differential Revision: https://reviews.llvm.org/D104810
The option --no-print-imm-hex was not included in the command guide for
llvm-objdump but appears in the help text. This commit adds it to the
command guide.
Differential Revision: https://reviews.llvm.org/D104717
Add UNIQUED and DISTINCT properties in Metadata.def and use them to
implement restrictions on the `distinct` property of MDNodes:
* DIExpression can currently be parsed from IR or read from bitcode
as `distinct`, but this property is silently dropped when printing
to IR. This causes accepted IR to fail to round-trip. As DIExpression
appears inline at each use in the canonical form of IR, it cannot
actually be `distinct` anyway, as there is no syntax to describe it.
* Similarly, DIArgList is conceptually always uniqued. It is currently
restricted to only appearing in contexts where there is no syntax for
`distinct`, but for consistency it is treated equivalently to
DIExpression in this patch.
* DICompileUnit is already restricted to always being `distinct`, but
along with adding general support for the inverse restriction I went
ahead and described this in Metadata.def and updated the parser to be
general. Future nodes which have this restriction can share this
support.
The new UNIQUED property applies to DIExpression and DIArgList, and
forbids them to be `distinct`. It also implies they are canonically
printed inline at each use, rather than via MDNode ID.
The new DISTINCT property applies to DICompileUnit, and requires it to
be `distinct`.
A potential alternative change is to forbid the non-inline syntax for
DIExpression entirely, as is done with DIArgList implicitly by requiring
it appear in the context of a function. For example, we would forbid:
!named = !{!0}
!0 = !DIExpression()
Instead we would only accept the equivalent inlined version:
!named = !{!DIExpression()}
This essentially removes the ability to create a `distinct` DIExpression
by construction, as there is no syntax for `distinct` inline. If this
patch is accepted as-is, the result would be that the non-canonical
version is accepted, but the following would be an error and produce a diagnostic:
!named = !{!0}
; error: 'distinct' not allowed for !DIExpression()
!0 = distinct !DIExpression()
Also update some documentation to consistently use the inline syntax for
DIExpression, and to describe the restrictions on `distinct` for nodes
where applicable.
Reviewed By: StephenTozer, t-tye
Differential Revision: https://reviews.llvm.org/D104827
I added an assertion in D91816 (documenting behavior added in D93422)
that callers and callees with mismatched fn attr's related to stack
protectors should not occur unless the callee was attributed
always_inline.
This falls apart when a call, invoke, or callbr (any instruction
inheriting from CallBase) itself has an always_inline attribute. Clang
will emit such attributes on Instructions when __attribute__((flatten))
is used to recursively force inlining from a caller.
Since these assertions only had the caller and callee Functions, and not
the call site (CallBase derived classes), we would have to search the
caller for such instructions to reconstruct the call site information.
But at that point, inlining has already occurred; the call site has
already been removed from the caller.
Remove the assertions, add a unit test for always_inline call sites, and
update the LangRef.
Another curiosity is that the always_inline Attribute on Instructions is
only expanded by the inline pass, not the always_inline pass.
Thanks to @pcc on this report when building Android's RunTime (ART)
interpreter.
Reviewed By: pcc, MaskRay
Differential Revision: https://reviews.llvm.org/D104944
the call's return type is void
Instead of trying hard to prevent global optimization passes such as
deadargelim from changing the return type to void, just ignore the
bundle if the return type is void. clang currently emits calls to
@llvm.objc.clang.arc.noop.use, which consumes the function call result,
immediately after the function call to prevent changes to the return
type, but optimization passes can delete the call to
@llvm.objc.clang.arc.noop.use if the function call doesn't return, which
enables deadargelim to change the return type.
rdar://76671438
Differential Revision: https://reviews.llvm.org/D103062
This intrinsic blocks floating point transformations by the optimizer.
Author: Pengfei
Reviewed By: LuoYuanke, Andy Kaylor, Craig Topper, kpn
Differential Revision: https://reviews.llvm.org/D99675
This adds support for Armv9-A's Realm Management Extension, including
three new system registers - MFAR_EL3, GPCCR_EL3 and GPTBR_EL3 - and
four new TLBI instructions.
The reference for the Realm Management Extension can be found at: https://developer.arm.com/documentation/ddi0615/aa.
Based on patches by Victor Campos.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D104773
For now, the source variable locations are printed at about the same
space as the comments for disassembled code, which can make some ranges
for variables disappear if a line contains comments, for example:
┠─ bar = W1
0: add x0, x2, #2, lsl #12 // =8192┃
4: add z31.d, z31.d, #65280 // =0xff00
8: nop ┻
The patch shifts the report a bit to allow printing comments up to
approximately 16 characters without interferences.
Differential Revision: https://reviews.llvm.org/D104700
Fix the command line guide for -g/-s/-S.
In particular, previously it was incorrectly stating that -S is an alias for --strip-all.
Differential revision: https://reviews.llvm.org/D104888
Adds some more text to the documentation for the noimplicitfloat
function attribute. Hopefully, this makes it clearer what
qualifies an implicit vs. explicit float, without becoming overly
long or going into target-specific details.
Reviewed By: rnk, craig.topper
Differential Revision: https://reviews.llvm.org/D104061
Change --max-timeline-cycles=0 to mean no limit on the number of cycles.
Use this in AMDGPU tests to show all instructions in the timeline view
instead of having it arbitrarily truncated.
Differential Revision: https://reviews.llvm.org/D104846
This can be seen as a follow up to commit 0ee439b705,
that changed the second argument of __powidf2, __powisf2 and
__powitf2 in compiler-rt from si_int to int. That was to align with
how those runtimes are defined in libgcc.
One thing that seem to have been missing in that patch was to make
sure that the rest of LLVM also handle that the argument now depends
on the size of int (not using the si_int machine mode for 32-bit).
When using __builtin_powi for a target with 16-bit int clang crashed.
And when emitting libcalls to those rtlib functions, typically when
lowering @llvm.powi), the backend would always prepare the exponent
argument as an i32 which caused miscompiles when the rtlib was
compiled with 16-bit int.
The solution used here is to use an overloaded type for the second
argument in @llvm.powi. This way clang can use the "correct" type
when lowering __builtin_powi, and then later when emitting the libcall
it is assumed that the type used in @llvm.powi matches the rtlib
function.
One thing that needed some extra attention was that when vectorizing
calls several passes did not support that several arguments could
be overloaded in the intrinsics. This patch allows overload of a
scalar operand by adding hasVectorInstrinsicOverloadedScalarOpd, with
an entry for powi.
Differential Revision: https://reviews.llvm.org/D99439
Currently the value is only used when calling `F->viewCFG()` which is missing out on its potential and usefulness.
So I added the check to the printer passes as well.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D102011
The original change was pushed in main as commit f7a23ecece.
It was then reverted by commit a04f01bab2 because it caused linker failures
on buildbots that don't build the AMDGPU target.
--
Some instructions are not defined well enough within the target’s scheduling
model for llvm-mca to be able to properly simulate its behaviour. The ideal
solution to this situation is to modify the scheduling model, but that’s not
always a viable strategy. Maybe other parts of the backend depend on that
instruction being modelled the way that it is. Or maybe the instruction is quite
complex and it’s difficult to fully capture its behaviour with tablegen. The
CustomBehaviour class (which I will refer to as CB frequently) is designed to
provide intuitive scaffolding for developers to implement the correct modelling
for these instructions.
More details are available in the original commit log message (f7a23ecece).
Differential Revision: https://reviews.llvm.org/D104149
I believe that after https://reviews.llvm.org/D102355 the behaviour of --print-source-context-lines has changed.
Before: --print-source-context-lines=3 prints 4 lines.
After: --print-source-context-lines=3 prints 3 lines.
Adjust the example in the docs for this change and make the testing a little more robust.
Differential Revision: https://reviews.llvm.org/D104114
Some instructions are not defined well enough within the target’s scheduling
model for llvm-mca to be able to properly simulate its behaviour. The ideal
solution to this situation is to modify the scheduling model, but that’s not
always a viable strategy. Maybe other parts of the backend depend on that
instruction being modelled the way that it is. Or maybe the instruction is quite
complex and it’s difficult to fully capture its behaviour with tablegen. The
CustomBehaviour class (which I will refer to as CB frequently) is designed to
provide intuitive scaffolding for developers to implement the correct modelling
for these instructions.
Implementation details:
llvm-mca does its best to extract relevant register, resource, and memory
information from every MCInst when lowering them to an mca::Instruction. It then
uses this information to detect dependencies and simulate stalls within the
pipeline. For some instructions, the information that gets captured within the
mca::Instruction is not enough for mca to simulate them properly. In these
cases, there are two main possibilities:
1. The instruction has a dependency that isn’t detected by mca.
2. mca is incorrectly enforcing a dependency that shouldn’t exist.
For the rest of this discussion, I will be focusing on (1), but I have put some
thought into (2) and I may revisit it in the future.
So we have an instruction that has dependencies that aren’t picked up by mca.
The basic idea for both pipelines in mca is that when an instruction wants to be
dispatched, we first check for register hazards and then we check for resource
hazards. This is where CB is injected. If no register or resource hazards have
been detected, we make a call to CustomBehaviour::checkCustomHazard() to give
the target specific CB the chance to detect and enforce any custom dependencies.
The return value for checkCustomHazaard() is an unsigned int representing the
(minimum) number of cycles that the instruction needs to stall for. It’s fine to
underestimate this value because when StallCycles gets down to 0, we’ll end up
checking for all the hazards again before the instruction is actually
dispatched. However, it’s important not to overestimate the value and the more
accurate your estimate is, the more efficient mca’s execution can be.
In general, for checkCustomHazard() to be able to detect these custom
dependencies, it needs information about the current instruction and also all of
the instructions that are still executing within the pipeline. The mca pipeline
uses mca::Instruction rather than MCInst and the current information encoded
within each mca::Instruction isn’t sufficient for my use cases. I had to add a
few extra attributes to the mca::Instruction class and have them get set by the
MCInst during instruction building. For example, the current mca::Instruction
doesn’t know its opcode, and it also doesn’t know anything about its immediate
operands (both of which I had to add to the class).
With information about the current instruction, a list of all currently
executing instructions, and some target specific objects (MCSubtargetInfo and
MCInstrInfo which the base CB class has references to), developers should be
able to detect and enforce most custom dependencies within checkCustomHazard. If
you need more information than is present in the mca::Instruction, feel free to
add attributes to that class and have them set during the lowering sequence from
MCInst.
Fortunately, in the in-order pipeline, it’s very convenient for us to pass these
arguments to checkCustomHazard. The hazard checking is taken care of within
InOrderIssueStage::canExecute(). This function takes a const InstRef as a
parameter (representing the instruction that currently wants to be dispatched)
and the InOrderIssueStage class maintains a SmallVector<InstRef, 4> which holds
all of the currently executing instructions. For the out-of-order pipeline, it’s
a bit trickier to get the list of executing instructions and this is why I have
held off on implementing it myself. This is the main topic I will bring up when
I eventually make a post to discuss and ask for feedback.
CB is a base class where targets implement their own derived classes. If a
target specific CB does not exist (or we pass in the -disable-cb flag), the base
class is used. This base class trivially returns 0 from its checkCustomHazard()
implementation (meaning that the current instruction needs to stall for 0 cycles
aka no hazard is detected). For this reason, targets or users who choose not to
use CB shouldn’t see any negative impacts to accuracy or performance (in
comparison to pre-patch llvm-mca).
Differential Revision: https://reviews.llvm.org/D104149
Emphasize that this is basically an attempt to remove
``PointerType::getElementType`` and ``Type::getPointerElementType()``.
Add a couple more subtasks.
Differential Revision: https://reviews.llvm.org/D104151
Ensure that we provide a `Module` when checking if a rename of an intrinsic is necessary.
This fixes the issue that was detected by https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=32288
(as mentioned by @fhahn), after committing D91250.
Note that the `LLVMIntrinsicCopyOverloadedName` is being deprecated in favor of `LLVMIntrinsicCopyOverloadedName2`.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D99173
This patch implements vector-predicated intrinsics on IR level for fadd,
fsub, fmul, fdiv and frem. There operate in the default floating-point
environment. We will use constrained fp operand bundles for constrained
vector-predicated fp math (D93455).
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D93470
I don't like landing this change, but it's an acknowledgement of a practical reality. Despite not having well specified semantics for inttoptr and ptrtoint involving non-integral pointer types, they are used in practice. Here's a quick summary of the current pragmatic reality:
* I happen to know that the main external user of non-integral pointers has effectively disabled the verifier rules.
* RS4GC (the lowering pass for abstract GC machine model which is the key motivation for non-integral pointers), even supports them. We just have all the tests using an integral pointer space to let the verifier run.
* Certain idioms (such as alignment checks for alignment N, where any relocation is guaranteed to be N byte aligned) are fine in practice.
* As implemented, inttoptr/ptrtoint are CSEd and are not control dependent. This means that any code which is intending to check a particular bit pattern at site of use must be wrapped in an intrinsic or external function call.
This change allows them in the Verifier, and updates the LangRef to specific them as implementation dependent. This allows us to acknowledge current reality while still leaving ourselves room to punt on figuring out "good" semantics until the future.
I noticed that I did not update the command guide when introducing the
--rsp-quoting option. This change fixes this.
Differential Revision: https://reviews.llvm.org/D103915