This commit was originally because it was suspected to cause a crash,
but a reproducer did not surface.
A crash that was exposed by this change was fixed in 1d8f2e5292.
This reverts the revert commit 0581c0b0ee.
This reverts commit e441b7a7a0.
This patch causes a compile error in tensorflow opensource project. The stack trace looks like:
Point of crash:
llvm/include/llvm/Analysis/LoopInfoImpl.h : line 35
(gdb) ptype *this
type = const class llvm::LoopBase<llvm::BasicBlock, llvm::Loop> [with BlockT = llvm::BasicBlock, LoopT = llvm::Loop]
(gdb) p *this
$1 = {ParentLoop = 0x0, SubLoops = std::vector of length 0, capacity 0, Blocks = std::vector of length 0, capacity 1,
DenseBlockSet = {<llvm::SmallPtrSetImpl<llvm::BasicBlock const*>> = {<llvm::SmallPtrSetImplBase> = {<llvm::DebugEpochBase> = {Epoch = 3}, SmallArray = 0x1b2bf6c8, CurArray = 0x1b2bf6c8,
CurArraySize = 8, NumNonEmpty = 0, NumTombstones = 0}, <No data fields>}, SmallStorage = {0xfffffffffffffffe, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0}}, IsInvalid = true}
(gdb) p *this->DenseBlockSet->CurArray
$2 = (const void *) 0xfffffffffffffffe
I will try to get a case from tensorflow or use creduce to get a small case.
Now that SCEVExpander can preserve LCSSA form,
we do not have to worry about LCSSA form when
trying to look through PHIs. SCEVExpander will take
care of inserting LCSSA PHI nodes as required.
This increases precision of the analysis in some cases.
Reviewed By: mkazantsev, bmahjour
Differential Revision: https://reviews.llvm.org/D71539
As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
Bail out if we have a PHI on an EHPad that gets a value from a
CatchSwitchInst. Because the CatchSwitchInst cannot be split, there is
no good place to stick any instructions.
This fixes PR26373.
llvm-svn: 259702
It turns out that terminatepad gives little benefit over a cleanuppad
which calls the termination function. This is not sufficient to
implement fully generic filters but MSVC doesn't support them which
makes terminatepad a little over-designed.
Depends on D15478.
Differential Revision: http://reviews.llvm.org/D15479
llvm-svn: 255522
While we have successfully implemented a funclet-oriented EH scheme on
top of LLVM IR, our scheme has some notable deficiencies:
- catchendpad and cleanupendpad are necessary in the current design
but they are difficult to explain to others, even to seasoned LLVM
experts.
- catchendpad and cleanupendpad are optimization barriers. They cannot
be split and force all potentially throwing call-sites to be invokes.
This has a noticable effect on the quality of our code generation.
- catchpad, while similar in some aspects to invoke, is fairly awkward.
It is unsplittable, starts a funclet, and has control flow to other
funclets.
- The nesting relationship between funclets is currently a property of
control flow edges. Because of this, we are forced to carefully
analyze the flow graph to see if there might potentially exist illegal
nesting among funclets. While we have logic to clone funclets when
they are illegally nested, it would be nicer if we had a
representation which forbade them upfront.
Let's clean this up a bit by doing the following:
- Instead, make catchpad more like cleanuppad and landingpad: no control
flow, just a bunch of simple operands; catchpad would be splittable.
- Introduce catchswitch, a control flow instruction designed to model
the constraints of funclet oriented EH.
- Make funclet scoping explicit by having funclet instructions consume
the token produced by the funclet which contains them.
- Remove catchendpad and cleanupendpad. Their presence can be inferred
implicitly using coloring information.
N.B. The state numbering code for the CLR has been updated but the
veracity of it's output cannot be spoken for. An expert should take a
look to make sure the results are reasonable.
Reviewers: rnk, JosephTremoulet, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D15139
llvm-svn: 255422
A PHI on a catchpad might be used by both edges out of the catchpad,
feeding back into a loop. In this case, just use the insertion point.
Anything more clever would require new basic blocks or PHI placement.
llvm-svn: 251442
We want to insert no-op casts as close as possible to the def. This is
tricky when the cast is of a PHI node and the BasicBlocks between the
def and the use cannot hold any instructions. Iteratively walk EH pads
until we hit a non-EH pad.
This fixes PR25326.
llvm-svn: 251393