See http://lists.llvm.org/pipermail/llvm-dev/2020-April/140549.html
For the record, GNU ld changed to 64k max page size in 2014
https://sourceware.org/git/?p=binutils-gdb.git;a=commit;h=7572ca8989ead4c3425a1500bc241eaaeffa2c89
"[RFC] ld/ARM: Increase maximum page size to 64kB"
Android driver forced 4k page size in AArch64 (D55029) and ARM (D77746).
A binary linked with max-page-size=4096 does not run on a system with a
higher page size configured. There are some systems out there that do
this and it leads to the binary getting `Killed!` by the kernel.
In the non-linker-script cases, when linked with -z noseparate-code
(default), the max-page-size increase should not cause any size
difference. There may be some VMA usage differences, though.
Reviewed By: psmith, MaskRay
Differential Revision: https://reviews.llvm.org/D77330
Port the D64906 technique to ARM. It deletes 3 alignments at
PT_LOAD boundaries for the default case: the size of an arm binary
decreases by at most 12kb.
Reviewed By: grimar
Differential Revision: https://reviews.llvm.org/D66749
llvm-svn: 370049
This reverts D53906.
D53906 increased p_align of PT_TLS on ARM/AArch64 to 32/64 to make the
static TLS layout compatible with Android Bionic's ELF TLS. However,
this may cause glibc ARM/AArch64 programs to crash (see PR41527).
The faulty PT_TLS in the executable satisfies p_vaddr%p_align != 0. The
remainder is normally 0 but may be non-zero with the hack in place. The
problem is that we increase PT_TLS's p_align after OutputSections'
addresses are fixed (assignAddress()). It is possible that
p_vaddr%old_p_align = 0 while p_vaddr%new_p_align != 0.
For a thread local variable defined in the executable, lld computed TLS
offset (local exec) is different from glibc computed TLS offset from
another module (initial exec/generic dynamic). Note: PR41527 said the
bug affects initial exec but actually generic dynamic is affected as
well.
(glibc is correct in that it compute offsets that satisfy
`offset%p_align == p_vaddr%p_align`, which is a basic ELF requirement.
This hack appears to work on FreeBSD rtld, musl<=1.1.22, and Bionic, but
that is just because they (and lld) incorrectly compute offsets that
satisfy `offset%p_align = 0` instead.)
Android developers are fine to revert this patch, carry this patch in
their tree before figuring out a long-term solution (e.g. a dummy .tdata
with sh_addralign=64 sh_size={0,1} in crtbegin*.o files. The overhead is
now insignificant after D62059).
Reviewed By: rprichard, srhines
Differential Revision: https://reviews.llvm.org/D62055
llvm-svn: 361090
Old: PT_LOAD(.data | PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .bss)
New: PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss)
The placement of | indicates page alignment caused by PT_GNU_RELRO. The
new layout has simpler rules and saves space for many cases.
Old size: roundup(.data) + roundup(.data.rel.ro)
New size: roundup(.data.rel.ro + .bss.rel.ro) + .data
Other advantages:
* At runtime the 3 memory mappings decrease to 2.
* start(PT_TLS) = start(PT_GNU_RELRO) = start(RW PT_LOAD). This
simplifies binary manipulation tools.
GNU strip before 2.31 discards PT_GNU_RELRO if its
address is not equal to the start of its associated PT_LOAD.
This has been fixed by https://sourceware.org/git/gitweb.cgi?p=binutils-gdb.git;h=f2731e0c374e5323ce4cdae2bcc7b7fe22da1a6f
But with this change, we will be compatible with GNU strip before 2.31
* Before, .got.plt (non-relro by default) was placed before .got (relro
by default), which made it impossible to have _GLOBAL_OFFSET_TABLE_
(start of .got.plt on x86-64) equal to the end of .got (R_GOT*_FROM_END)
(https://bugs.llvm.org/show_bug.cgi?id=36555). With the new ordering, we
can improve on this regard if we'd like to.
Reviewers: ruiu, espindola, pcc
Subscribers: emaste, arichardson, llvm-commits, joerg, jdoerfert
Differential Revision: https://reviews.llvm.org/D56828
llvm-svn: 356117
ARM and AArch64 use TLS variant 1, where the first two words after the
thread pointer are reserved for the TCB, followed by the executable's TLS
segment. Both the thread pointer and the TLS segment are aligned to at
least the TLS segment's alignment.
Android/Bionic historically has not supported ELF TLS, and it has
allocated memory after the thread pointer for several Bionic TLS slots
(currently 9 but soon only 8). At least one of these allocations
(TLS_SLOT_STACK_GUARD == 5) is widespread throughout Android/AArch64
binaries and can't be changed.
To reconcile this disagreement about TLS memory layout, set the minimum
alignment for executable TLS segments to 8 words on ARM/AArch64, which
reserves at least 8 words of memory after the TP (2 for the ABI-specified
TCB and 6 for alignment padding). For simplicity, and because lld doesn't
know when it's targeting Android, increase the alignment regardless of
operating system.
Differential Revision: https://reviews.llvm.org/D53906
llvm-svn: 350681
Its PR34712,
GNU linkers recently changed default values to "both" of "sysv".
Patch do the same for all targets except MIPS, where .gnu.hash
section is not yet supported.
Code suggested by Rui Ueyama.
Differential revision: https://reviews.llvm.org/D38407
llvm-svn: 315051
This is in preparation for my next change, which will introduce a relro
nobits section. That requires that relro sections appear at the end of the
progbits part of the r/w segment so that the relro nobits section can appear
contiguously.
Because of the amount of churn required in the test suite, I'm making this
change separately.
llvm-svn: 291523
The module index dynamic relocation R_ARM_DTPMOD32 is always 1 for an
executable. When static linking and when we know that we are not a shared
object we can resolve the module index relocation statically.
The logic in handleNoRelaxTlsRelocation remains the same for Mips as it
has its own custom GOT writing code. For ARM we add the module index
relocation to the GOT when it can be resolved statically.
In addition the type of the RelExpr for the static resolution of TlsGotRel
should be R_TLS and not R_ABS as we need to include the size of
the thread control block in the calculation.
Addresses the TLS part of PR30218.
Differential revision: https://reviews.llvm.org/D27213
llvm-svn: 288153
The ARM TLS relocations are placed on literal data and not the
code-sequence, it is therefore not possible to implement the relaxTls*
functions. This change updates handleMipsTlsRelocation() to
handleNoRelaxTlsRelocation() and incorporates ARM as well as Mips.
The ARM support in handleNoRelaxTlsRelocation() currently needs to ouput
the module index dynamic relocation in all cases as it is relying on the
dynamic linker to set the module index in the got.
Should address PR30218
Differential Revision: https://reviews.llvm.org/D24827
llvm-svn: 282250