This matches ARM64 behaviour, which I think is clearer. It also puts all the
churn from that difference into one easily ignored commit.
llvm-svn: 207116
These can have different relocations in ELF. In particular both:
b.eq global
ldr x0, global
are valid, giving different relocations. The only possible way to distinguish
them is via a different fixup, so the operands had to be separated throughout
the backend.
llvm-svn: 207105
ARM64 was not producing pure BFI instructions for bitfield insertion
operations, unlike AArch64. The approach had to be a little different (in
ISelDAGToDAG rather than ISelLowering), and the outcomes aren't identical but
hopefully this gives it similar power.
This should address PR19424.
llvm-svn: 207102
This allows us to compile
return (mask & 0x8 ? a : b);
into
testb $8, %dil
cmovnel %edx, %esi
instead of
andl $8, %edi
shrl $3, %edi
cmovnel %edx, %esi
which we formed previously because dag combiner canonicalizes setcc of and into shift.
llvm-svn: 207088
Added support for bytes replication feature, so it could be GAS compatible.
E.g. instructions below:
"vmov.i32 d0, 0xffffffff"
"vmvn.i32 d0, 0xabababab"
"vmov.i32 d0, 0xabababab"
"vmov.i16 d0, 0xabab"
are incorrect, but we could deal with such cases.
For first one we should emit:
"vmov.i8 d0, 0xff"
For second one ("vmvn"):
"vmov.i8 d0, 0x54"
For last two instructions it should emit:
"vmov.i8 d0, 0xab"
P.S.: In ARMAsmParser.cpp I have also fixed few nearby style issues in old code.
Just for keeping method bodies in harmony with themselves.
llvm-svn: 207080
This excludes avx512 as I don't have hardware to verify. It excludes _dq
variants because they are represented in the IR as <{2,4} x i64> when it's
actually a byte shift of the entire i{128,265}.
This also excludes _dq_bs as they aren't at all supported by the backend.
There are also no corresponding instructions in the ISA. I have no idea why
they exist...
llvm-svn: 207058
Summary:
Since the upper 64 bits of the destination register are undefined when
performing this operation, we can substitute it and let the optimizer
figure out that only a copy is needed.
Also added range merging, if an instruction copies a range that can be
merged with a previous copied range.
Added test cases for both optimizations.
Reviewers: grosbach, nadav
CC: llvm-commits
Differential Revision: http://reviews.llvm.org/D3357
llvm-svn: 207055
This is dependent on changes that are not fully ready to be merged yet (WoA
object file emission). The test can be re-enabled for that target later.
llvm-svn: 207038
GCOV provides an option to prepend output file names with the source
file name, to disambiguate between covered data that's included from
multiple sources. Add a flag to llvm-cov that does the same.
llvm-svn: 207035
ANDS does not use the same encoding scheme as other xxxS instructions (e.g.,
ADDS). Take that into account to avoid wrong peephole optimization.
<rdar://problem/16693089>
llvm-svn: 207020
For now it contains a single flag, SanitizeAddress, which enables
AddressSanitizer instrumentation of inline assembly.
Patch by Yuri Gorshenin.
llvm-svn: 206971
Use -stats to see how many loops were analyzed for possible vectorization and how many of them were actually vectorized.
Patch by Zinovy Nis
Differential Revision: http://reviews.llvm.org/D3438
llvm-svn: 206956
AArch64 has feature predicates for NEON, FP and CRYPTO instructions.
This allows the compiler to generate code without using FP, NEON
or CRYPTO instructions.
llvm-svn: 206949
In the case where the constant comes from a cloned cast instruction, the
materialization code has to go before the cloned cast instruction.
This commit fixes the method that finds the materialization insertion point
by making it aware of this case.
This fixes <rdar://problem/15532441>
llvm-svn: 206913
diagnostic that includes location information.
Currently if one has this assembly:
.quad (0x1234 + (4 * SOME_VALUE))
where SOME_VALUE is undefined ones gets the less than
useful error message with no location information:
% clang -c x.s
clang -cc1as: fatal error: error in backend: expected relocatable expression
With this fix one now gets a more useful error message
with location information:
% clang -c x.s
x.s:5:8: error: expected relocatable expression
.quad (0x1234 + (4 * SOME_VALUE))
^
To do this I plumbed the SMLoc through the MCObjectStreamer
EmitValue() and EmitValueImpl() interfaces so it could be used
when creating the MCFixup.
rdar://12391022
llvm-svn: 206906
The point of these calls is to allow Thumb-1 code to make use of the VFP unit
to perform its operations. This is not desirable with -msoft-float, since most
of the reasons you'd want that apply equally to the runtime library.
rdar://problem/13766161
llvm-svn: 206874