Summary:
Currently the DbgValueHistorymap only keeps track of clobbered registers
for the last debug value that it has encountered. This could lead to
preceding register-described debug values living on longer in the
location lists than they should. See PR40283 for an example. This
patch does not introduce tracking of multiple registers, but changes
the DbgValueHistoryMap structure to allow for that in a follow-up
patch. This patch is not NFC, as it at least fixes two bugs in
DwarfDebug (both are covered in the new clobbered-fragments.mir test):
* If a debug value was clobbered (its End pointer set), the value would
still be added to OpenRanges, meaning that the succeeding location list
entries could potentially contain stale values.
* If a debug value was clobbered, and there were non-overlapping
fragments that were still live after the clobbering, DwarfDebug would
not create a location list entry starting directly after the
clobbering instruction. This meant that the location list could have
a gap until the next debug value for the variable was encountered.
Before this patch, the history map was represented by <Begin, End>
pairs, where a new pair was created for each new debug value. When
dealing with partially overlapping register-described debug values, such
as in the following example:
DBG_VALUE $reg2, $noreg, !1, !DIExpression(DW_OP_LLVM_fragment, 32, 32)
[...]
DBG_VALUE $reg3, $noreg, !1, !DIExpression(DW_OP_LLVM_fragment, 64, 32)
[...]
$reg2 = insn1
[...]
$reg3 = insn2
the history map would then contain the entries `[<DV1, insn1>, [<DV2, insn2>]`.
This would leave it up to the users of the map to be aware of
the relative order of the instructions, which e.g. could make
DwarfDebug::buildLocationList() needlessly complex. Instead, this patch
makes the history map structure monotonically increasing by dropping the
End pointer, and replacing that with explicit clobbering entries in the
vector. Each debug value has an "end index", which if set, points to the
entry in the vector that ends the debug value. The ending entry can
either be an overlapping debug value, or an instruction which clobbers
the register that the debug value is described by. The ending entry's
instruction can thus either be excluded or included in the debug value's
range. If the end index is not set, the debug value that the entry
introduces is valid until the end of the function.
Changes to test cases:
* DebugInfo/X86/pieces-3.ll: The range of the first DBG_VALUE, which
describes that the fragment (0, 64) is located in RDI, was
incorrectly ended by the clobbering of RAX, which the second
(non-overlapping) DBG_VALUE was described by. With this patch we
get a second entry that only describes RDI after that clobbering.
* DebugInfo/ARM/partial-subreg.ll: This test seems to indiciate a bug
in LiveDebugValues that is caused by it not being aware of fragments.
I have added some comments in the test case about that. Also, before
this patch DwarfDebug would incorrectly include a register-described
debug value from a preceding block in a location list entry.
Reviewers: aprantl, probinson, dblaikie, rnk, bjope
Reviewed By: aprantl
Subscribers: javed.absar, kristof.beyls, jdoerfert, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D59941
llvm-svn: 358072
Summary:
This is a follow-up to D57510. This patch stops DebugHandlerBase from
changing the starting label for the first non-overlapping,
register-described parameter DBG_VALUEs to the beginning of the
function. That code did not consider what defined the registers, which
could result in the ranges for the debug values starting before their
defining instructions. We currently do not emit debug values for
constant values directly at the start of the function, so this code is
still useful for such values, but my intention is to remove the code
from DebugHandlerBase completely when we get there. One reason for
removing it is that the code violates the history map's ranges, which I
think can make it quite confusing when troubleshooting.
In D57510, PrologEpilogInserter was amended so that parameter DBG_VALUEs
now are kept at the start of the entry block, even after emission of
prologue code. That was done to reduce the degradation of debug
completeness from this patch. PR40638 is another example, where the
lexical-scope trimming that LDV does, in combination with scheduling,
results in instructions after the prologue being left without locations.
There might be other cases where the DBG_VALUEs are pushed further down,
for which the DebugHandlerBase code may be helpful, but as it now quite
often result in incorrect locations, even after the prologue, it seems
better to remove that code, and try to work our way up with accurate
locations.
In the long run we should maybe not aim to provide accurate locations
inside the prologue. Some single location descriptions, at least those
referring to stack values, generate inaccurate values inside the
epilogue, so we maybe should not aim to achieve accuracy for location
lists. However, it seems that we now emit line number programs that can
result in GDB and LLDB stopping inside the prologue when doing line
number stepping into functions. See PR40188 for more information.
A summary of some of the changed test cases is available in PR40188#c2.
Reviewers: aprantl, dblaikie, rnk, jmorse
Reviewed By: aprantl
Subscribers: jdoerfert, jholewinski, jvesely, javed.absar, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D57511
llvm-svn: 353928
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is
!DILabel(scope: !1, name: "foo", file: !2, line: 3)
We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is
llvm.dbg.label(metadata !1)
It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.
We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.
Differential Revision: https://reviews.llvm.org/D45024
Patch by Hsiangkai Wang.
llvm-svn: 331841
Summary:
Based on Fred's patch here: https://reviews.llvm.org/D6771
I can't seem to commandeer the old review, so I'm creating a new one.
With that change the locations exrpessions are pretty printed inline in the
DIE tree. The output looks like this for debug_loc entries:
DW_AT_location [DW_FORM_data4] (0x00000000
0x0000000000000001 - 0x000000000000000b: DW_OP_consts +3
0x000000000000000b - 0x0000000000000012: DW_OP_consts +7
0x0000000000000012 - 0x000000000000001b: DW_OP_reg0 RAX, DW_OP_piece 0x4
0x000000000000001b - 0x0000000000000024: DW_OP_breg5 RDI+0)
And like this for debug_loc.dwo entries:
DW_AT_location [DW_FORM_sec_offset] (0x00000000
Addr idx 2 (w/ length 190): DW_OP_consts +0, DW_OP_stack_value
Addr idx 3 (w/ length 23): DW_OP_reg0 RAX, DW_OP_piece 0x4)
Simple locations without ranges are printed inline:
DW_AT_location [DW_FORM_block1] (DW_OP_reg4 RSI, DW_OP_piece 0x4, DW_OP_bit_piece 0x20 0x0)
The debug_loc(.dwo) dumping in changed accordingly to factor the code.
Reviewers: dblaikie, aprantl, friss
Subscribers: mgorny, javed.absar, hiraditya, llvm-commits, JDevlieghere
Differential Revision: https://reviews.llvm.org/D37123
llvm-svn: 312042
There is no situation where this rarely-used argument cannot be
substituted with a DIExpression and removing it allows us to simplify
the DWARF backend. Note that this patch does not yet remove any of
the newly dead code.
rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D35951
llvm-svn: 309426
When DwarfExpression is emitting a fragment that is located in a
register and that fragment is smaller than the register, and the
register must be composed from sub-registers (are you still with me?)
the last DW_OP_piece operation must not be larger than the size of the
fragment itself, since the last piece of the fragment could be smaller
than the last subregister that is being emitted.
rdar://problem/29779065
llvm-svn: 290324