If hsa_init fails, subsequent calls into hsa are not safe. Except for
hsa_init, but we don't retry on failure.
This patch:
- deletes a print that called into hsa to ask why it can't call into hsa
- drops a merge conflict block next to that print
- reliably initializes number of devices to zero
- skips the plugin destructor contents if the constructor failed to init hsa
Tested by making hsa_init return error, and by forcing the dynamic library
use which was then deleted from disk. Before this patch, both segv. After it,
friendly message about offloading being unavailable.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106774
Default to building the amdgpu plugin to use dlopen when hsa is
not found instead of disabling it.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106600
gcc 11 introduced support for depend clause, but the gomp interface of libomp
does not yet handle the information.
Also remove -fopenmp-version=50, which is no longer needed for clang, but not
supported by gcc.
We build `deviceRTLs` with `-O1` by default, which also triggers OpenMPOpt. When
the info cache is created, some attributes are removed. As a result, although we
mark a few functions `noinline`, they are still inlined when the bitcode library
is generated. This can cause an issue in middle end optimization.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106710
Fixes PR 51174. c++14 should be a more portable option than gnu++14.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D106632
Bug 50022 [0] reports target nowait fails in certain case, which is added in this
patch. The root cause of the failure is, when the second task is created, its
parent's `td_incomplete_child_tasks` will not be incremented because there is no
parallel region here thus its team is serialized. Therefore, when the initial
thread is waiting for its unfinished children tasks, it thought there is only
one, the first task, because it is hidden helper task, so it is tracked. The
second task will only be pushed to the queue when the first task is finished.
However, when the first task finishes, it first decrements the counter of its
parent, and then release dependences. Once the counter is decremented, the thread
will move on because its counter is reset, but actually, the second task has not
been executed at all. As a result, since in this case, the main function finishes,
then `libomp` starts to destroy. When the second task is pushed somewhere, all
some of the structures might already have already been destroyed, then anything
could happen.
This patch simply moves `__kmp_release_deps` ahead of decrement of the counter.
In this way, we can make sure that the initial thread is aware of the existence
of another task(s) so it will not move on. In addition, in order to tackle
dependence chain starting with hidden helper thread, when hidden helper task is
encountered, we force the task to release dependences.
Reference:
[0] https://bugs.llvm.org/show_bug.cgi?id=50022
Reviewed By: AndreyChurbanov
Differential Revision: https://reviews.llvm.org/D106519
Unrolling this loop provides better performance in practice because it is
executed on the device and is likely to be very small.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D106692
This patch tries to partially fix one of the two data race issues reported in
[1] by introducing a per-entry mutex. Additional discussion can also be found in
D104418, which will also be refined to fix another data race problem.
Here is how it works. Like before, `DataMapMtx` is still being used for mapping
table lookup and update. In any case, we will get a table entry. If we need to
make a data transfer (update the data on the device), we need to lock the entry
right before releasing `DataMapMtx`, and the issue of data transfer should be
after releasing `DataMapMtx`, and the entry is unlocked afterwards. This can
guarantee that: 1) issue of data movement is not in critical region, which will
not affect performance too much, and also will not affect other threads that don't
touch the same entry; 2) if another thread accesses the same entry, the state of
data movement is consistent (which requires that a thread must first get the
update lock before getting data movement information).
For a target that doesn't support async data transfer, issue of data movement is
data transfer. This two-lock design can potentially improve concurrency compared
with the design that guards data movement with `DataMapMtx` as well. For a target
that supports async data movement, we could simply attach the event between the
issue of data movement and unlock the entry. For a thread that wants to get the
event, it must first get the lock. This can also get rid of the busy wait until
the event pointer is valid.
Reference:
[1] https://bugs.llvm.org/show_bug.cgi?id=49940
Reviewed By: grokos
Differential Revision: https://reviews.llvm.org/D104555
With D106496 we can make the globalization fallback stack much simpler
and this version doesn't seem to experience the spurious failures and
deadlocks we have seen before.
Differential Revision: https://reviews.llvm.org/D106576
This patch adds support for two environment variables to configure the device.
``LIBOMPTARGET_STACK_SIZE`` sets the amount of memory in bytes that each thread
has for its stack. ``LIBOMPTARGET_HEAP_SIZE`` sets the amount of heap memory
that can be allocated using malloc / free on the device.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106627
In current implementation, if a regular task depends on a hidden helper task,
and when the hidden helper task is releasing its dependences, it directly calls
`__kmp_omp_task`. This could cause a problem that if `__kmp_push_task` returns
`TASK_NOT_PUSHED`, the task will be executed immediately. However, the hidden
helper threads are assumed to only execute hidden helper tasks. This could cause
problems because when calling `__kmp_omp_task`, the encountering gtid, which is
not the real one of the thread, is passed.
This patch uses `__kmp_give_task`, but because it is a static function, a new
wrapper `__kmpc_give_task` is added.
Reviewed By: AndreyChurbanov
Differential Revision: https://reviews.llvm.org/D106572
These functions should follow the camel case convention. These are really easy to change
and are needed for D106033.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D106390
AMDGPU can assume Elf64 so doesn't need to abstract over Elf32
Drop a few other unused headers at the same time. Now only llvm elf
and libelf are used by the plugin.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106579
AMDGPU plugin equivalent of D95155, build without HSA installed locally
Compiles a new file, plugins/amdgpu/dynamic_hsa/hsa.cpp, to an object file that
exposes the same symbols that the plugin presently uses from hsa. The object
file contains dlopen of hsa and cached dlsym calls. Also provides header files
corresponding to the subset that is used.
This is behind a feature flag, LIBOMPTARGET_FORCE_DLOPEN_LIBHSA, default off.
That allows developers to build against the dlopen/dlsym implementation, e.g.
while testing this mode.
Enabling by default will cause this plugin to build on a wider variety of
machines than it does at present so may break some CI builds. That risk can
be minimised by reviewing the header dependencies of the library and ensuring
it doesn't use any libraries that are not already used by libomptarget.
Separating the implementation from enabling by default in case the latter needs
to be rolled back after wider CI results.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106559
Revision of D102858. Raise dlwrap arity argument to template argument
so the correct value is given in the error message. E.g. '2 == 1' instead of
'2 == trait<>::nargs'.
Arity higher than it should be:
Before diff
```
$/plugins/cuda/dynamic_cuda/cuda.cpp:23:1: error:
static_assert failed due to requirement '2 == trait<cudaError_enum (*)(unsigned int)>::nargs'
"Arity Error"
DLWRAP_INTERNAL(cuInit, 2);
^~~~~~~~~~~~~~~~~~~~~~~~~~
...
$/include/dlwrap.h:166:3: note: expanded from macro
'DLWRAP_COMMON'
static_assert(ARITY == trait<decltype(&SYMBOL)>::nargs, "Arity Error"); \
```
After diff
In file included from $/plugins/cuda/dynamic_cuda/cuda.cpp:16:
```
$/include/dlwrap.h:131:3: error: static_assert failed due to
requirement '2UL == 1UL' "Arity Error"
static_assert(Requested == Required, "Arity Error");
^ ~~~~~~~~~~~~~~~~~~~~~
$/plugins/cuda/dynamic_cuda/cuda.cpp:23:1: note: in
instantiation of function template specialization 'dlwrap::verboseAssert<2UL, 1UL>' requested
here
DLWRAP_INTERNAL(cuInit, 2);
```
Arity lower than it should be:
Before diff
```
$/plugins/cuda/dynamic_cuda/cuda.cpp:131:10: error: no
matching function for call to 'dlwrap_cuInit'
return dlwrap_cuInit(X);
^~~~~~~~~~~~~
$/plugins/cuda/dynamic_cuda/cuda.cpp:23:1: note: candidate
function not viable: requires 0 arguments, but 1 was provided
DLWRAP_INTERNAL(cuInit, 0);
```
After diff
In file included from $/plugins/cuda/dynamic_cuda/cuda.cpp:16:
```
$/include/dlwrap.h:131:3: error: static_assert failed due to
requirement '0UL == 1UL' "Arity Error"
static_assert(Requested == Required, "Arity Error");
^ ~~~~~~~~~~~~~~~~~~~~~
$/plugins/cuda/dynamic_cuda/cuda.cpp:23:1: note: in
instantiation of function template specialization 'dlwrap::verboseAssert<0UL, 1UL>' requested
here
DLWRAP_INTERNAL(cuInit, 0);
```
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106543
Summary:
Fixes some warning given for uninitialized block counts if the exection mode is
not recognized. This shouldn't happen in practice because the execution mode is
checked when it's read from the device.
This class is instantiated once in rtl.cpp before hsa_init is
called. The hsa_signal_create call therefore fails leaving the pool empty.
This signal pool is a legacy from ATMI where it was constructed after hsa_init.
Moving the state into the rtl.cpp global class disabled the initial populating
of the pool without noticeably changing performance. Just rechecked with a fix
that allocates the signals after hsa_init and that also doesn't noticeably
change performance.
This patch therefore drops the initialisation. Only change from main is to
drop a DEBUG_PRINT statement that would say the pool initial size is zero.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106515
Function internalization can sometimes occur in situations where we want to
keep the call sites intact. This patch adds an option to disable function
internalization and prevents the device runtime from being internalized while
creating the bitcode library.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106438
This patch introduces `__kmpc_is_generic_main_thread_id` which splits the old
comparison into its own runtime function. The purpose of this is so we can fold
this part independently, so when both this and `is_spmd_mode` are folded the
final function will be folded as well.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106437
Qualified kernels can be transformed from generic-mode to SPMD mode using an
optimization in OpenMPOpt. This patch introduces a new execution mode to
indicate kernels that have been transformed from generic-mode to SPMD-mode.
These kernels have SPMD-mode execution, but need generic-mode semantics for
scheduling the blocks and threads. Without this far too few blocks will be
scheduled for a generic region as SPMD mode expects the trip count to be
divided by the number of threads.
Reviewed By: ggeorgakoudis
Differential Revision: https://reviews.llvm.org/D106460
This patch changes `__kmpc_free_shared` to take an additional argument
corresponding to the associated allocation's size. This makes it easier to
implement the allocator in the runtime.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106496
The patch exposes the libomptarget runtime function that gets the hardware thread id through the kmpc API. This is to be used in SPMDization for checking the thread id to execute regions by a single thread in a block.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106323
Create a hsa_api.h header that includes the ROCr headers in use
Drop some unused headers and _cplusplus macros
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106455
In `deviceRTLs`, the parallel level is stored in a shared variable of type `uint8_t`.
`__kmpc_parallel_level` currently returns a 16-bit interger. This patch first
changes the return type of the function to `uint8_t`, same as the shared variable,
and then corrects function type which was updated in D105955.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106384
Currently the NPVTX work function is marked volatile. This prevents some
optimizations from using this value.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106310
D106236 added a new CMake argument for `libomptarget` test, but when user's
input contains white spaces, CMake will add escape char to the final lit command,
which leads to an error. This patch converts the user's input `LIBOMPTARGET_LIT_ARGS`
into a local array, and then passes the array to the function.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D106247
By default, `lit` uses all threads to invoke tests, which can easily cause out
of memory on GPUs because most of OpenMP offloading test usually take about 1GB
GPU memory, but a typical GPU only has 4-8GB memory. This patch introduce a
CMake argument `LIBOMPTARGET_LIT_ARGS` to allow users to control the behavior of
`libomptarget` tests, similar to `LLVM_LIT_ARGS`.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D106236
Currently when we compile the project in debug mode, `-g` will not be added to
compilation flag. The bc files generated in different mode are of different size.
When using GPU debuggers like `cuda-gdb`, it is expected to provide more info
with a debug version of bc lib.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D106229
Parallel regions are outlined as functions with capture variables explicitly generated as distinct parameters in the function's argument list. That complicates the fork_call interface in the OpenMP runtime: (1) the fork_call is variadic since there is a variable number of arguments to forward to the outlined function, (2) wrapping/unwrapping arguments happens in the OpenMP runtime, which is sub-optimal, has been a source of ABI bugs, and has a hardcoded limit (16) in the number of arguments, (3) forwarded arguments must cast to pointer types, which complicates debugging. This patch avoids those issues by aggregating captured arguments in a struct to pass to the fork_call.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D102107
This patch begins adding documentation for each remark emitted by
`openmp-opt`. This builds on the IDs introduced in D105939 so that users
can more easily identify each remark in the webpage.
Depends on D105939.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106018
There are two places in current deviceRTLs where it computes parallel level explicitly,
which is basically the functionality of `__kmpc_parallel_level`. Starting from
D105787, we plan to introduce a series of function call folding based on information
that can be deducted during compilation time. Computation of parallel level is
the next target. This patch makes steps for the optimization.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D105955
D105812 introduced a regression where if a PTR_AND_OBJ entry was mapped on the device, then the OBJ was deallocated and then reallocated at a different address, the Shadow Pointer Map would still contain an entry for the PTR but pointing to the old address. This caused test `env/base_ptr_ref_count.c` to fail.
Differential Revision: https://reviews.llvm.org/D105947
Standalone build for OpenMP runtime using GCC is giving -Wcomment
warnings where a backslash newline is encountered in the // style
comment. This switches the // style for /* style to silence the
warnings.
This patch includes a few changes to improve task allocation
performance slightly. These changes are enough to restore performance
drop observed after introducing hidden helper.
Differential Revision: https://reviews.llvm.org/D105715
There is no guarantee that the space allocated in `libname`
is enough to accomodate the whole `dl_info.dli_fname`,
because it could e.g. have an suffix - `.5`,
and that highlights another problem - what it should do about suffxies,
and should it do anything to resolve the symlinks before changing the filename?
```
$ LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/lib" ./src/utilities/rstest/rstest -c /tmp/f49137920.NEF
dl_info.dli_fname "/usr/local/lib/libomp.so.5"
strlen(dl_info.dli_fname) 26
lib_path_length 14
lib_path_length + 12 26
=================================================================
==30949==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x60300000002a at pc 0x000000548648 bp 0x7ffdfa0aa780 sp 0x7ffdfa0a9f40
WRITE of size 27 at 0x60300000002a thread T0
#0 0x548647 in strcpy (/home/lebedevri/rawspeed/build-Clang-SANITIZE/src/utilities/rstest/rstest+0x548647)
#1 0x7fb9e3e3d234 in ompd_init() /repositories/llvm-project/openmp/runtime/src/ompd-specific.cpp:102:5
#2 0x7fb9e3dcb446 in __kmp_do_serial_initialize() /repositories/llvm-project/openmp/runtime/src/kmp_runtime.cpp:6742:3
#3 0x7fb9e3dcb40b in __kmp_get_global_thread_id_reg /repositories/llvm-project/openmp/runtime/src/kmp_runtime.cpp:251:7
#4 0x59e035 in main /home/lebedevri/rawspeed/build-Clang-SANITIZE/../src/utilities/rstest/rstest.cpp:491
#5 0x7fb9e3762d09 in __libc_start_main csu/../csu/libc-start.c:308:16
#6 0x4df449 in _start (/home/lebedevri/rawspeed/build-Clang-SANITIZE/src/utilities/rstest/rstest+0x4df449)
0x60300000002a is located 0 bytes to the right of 26-byte region [0x603000000010,0x60300000002a)
allocated by thread T0 here:
#0 0x55cc5d in malloc (/home/lebedevri/rawspeed/build-Clang-SANITIZE/src/utilities/rstest/rstest+0x55cc5d)
#1 0x7fb9e3e3d224 in ompd_init() /repositories/llvm-project/openmp/runtime/src/ompd-specific.cpp:101:17
#2 0x7fb9e3762d09 in __libc_start_main csu/../csu/libc-start.c:308:16
SUMMARY: AddressSanitizer: heap-buffer-overflow (/home/lebedevri/rawspeed/build-Clang-SANITIZE/src/utilities/rstest/rstest+0x548647) in strcpy
Shadow bytes around the buggy address:
0x0c067fff7fb0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0c067fff7fc0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0c067fff7fd0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0c067fff7fe0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0c067fff7ff0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
=>0x0c067fff8000: fa fa 00 00 00[02]fa fa fa fa fa fa fa fa fa fa
0x0c067fff8010: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0x0c067fff8020: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0x0c067fff8030: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0x0c067fff8040: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0x0c067fff8050: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
Shadow byte legend (one shadow byte represents 8 application bytes):
Addressable: 00
Partially addressable: 01 02 03 04 05 06 07
Heap left redzone: fa
Freed heap region: fd
Stack left redzone: f1
Stack mid redzone: f2
Stack right redzone: f3
Stack after return: f5
Stack use after scope: f8
Global redzone: f9
Global init order: f6
Poisoned by user: f7
Container overflow: fc
Array cookie: ac
Intra object redzone: bb
ASan internal: fe
Left alloca redzone: ca
Right alloca redzone: cb
==30949==ABORTING
Aborted
```
Currently, libomptarget will always perform a host-to-device memory transfer in
order to update the device pointer of a PTR_AND_OBJ entry. This is not always
necessary because the device pointer may have been set to the correct pointee
address already, so we can eliminate the redundant memory transfer.
Simplifies control flow to allow store/load forwarding
This change folds two basic blocks into one, leaving a single store to parallelLevel.
This is a step towards spmd kernels with sufficiently aggressive inlining folding
the loads from parallelLevel and thus discarding the nested parallel handling
when it is unused.
Transform:
```
int threadId = GetThreadIdInBlock();
if (threadId == 0) {
parallelLevel[0] = expr;
} else if (GetLaneId() == 0) {
parallelLevel[GetWarpId()] = expr;
}
// =>
if (GetLaneId() == 0) {
parallelLevel[GetWarpId()] = expr;
}
// because
unsigned GetLaneId() { return GetThreadIdInBlock() & (WARPSIZE - 1);}
// so whenever threadId == 0, GetLaneId() is also 0.
```
That replaces a store in two distinct basic blocks with as single store.
A more aggressive follow up is possible if the threads in the warp/wave
race to write the same value to the same address. This is not done as
part of this change.
```
if (GetLaneId() == 0) {
parallelLevel[GetWarpId()] = expr;
}
// =>
parallelLevel[GetWarpId()] = expr;
// because
unsigned GetWarpId() { return GetThreadIdInBlock() / WARPSIZE; }
// so GetWarpId will index the same element for every thread in the warp
// and, because expr is lane-invariant in this case, every lane stores the
// same value to this unique address
```
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D105699
The annotations in libomp were never built by default. The annotations are
also superseded by the annotations which the OMPT tool libarcher.so provides.
With respect to libarcher, libomp behaves as if libarcher would be the last
element of OMP_TOOL_LIBARARIES. I.e., if no other OMPT tool gets active,
libarcher will check if an OpenMP application is built with TSan.
Since libarcher gets loaded by default, enabling LIBOMP_TSAN_SUPPORT would
result in redundant annotations for TSan, which slightly differ in details
and coverage (e.g. task dependencies are not handled well by the annotations
in libomp).
This patch removes all TSan annotations from the OpenMP runtime code.
Differential Revision: https://reviews.llvm.org/D103767
The compile-time assertion is supposed to prevent double-free caused by
unexpected combination of preprocessor defines passed by an OMPT tool.
The current defines are not used, so this patch replaces the check with
macros actually used in ompt-multiplex.h
Reported by: Semih Burak
Differential Revision: https://reviews.llvm.org/D104633
In order to fold calls based on high-level knowledge and control flow
tracking it helps to expose the information as a runtime call. The
logic: `!SPMD && getTID() == getMasterTID()` was used in various places
and is now encapsulated in `__kmpc_is_generic_main_thread`. As part of
this rewrite we replaced eager computation of arguments with on-demand
computation, especially helpful if the calls can be folded and arguments
don't need to be computed consequently.
Differential Revision: https://reviews.llvm.org/D105768
In order to avoid malloc/free, up to NUM_SHARED_VARIABLES_IN_SHARED_MEM
(=64) variables are communicated in dedicated shared memory instead. The
simplification does avoid the need for an "init" and requires "deinit"
only if we ever communicate more than NUM_SHARED_VARIABLES_IN_SHARED_MEM
variables.
Differential Revision: https://reviews.llvm.org/D105767
We had multiple functions to determine the execution mode (SPMD/Generic)
and runtime status (initialized/uninitialized) but that just increased
complexity without a real benefit. Especially with D102307 in mind it
is helpful to reduce the dependence on the `ident_t` flags.
Differential Revision: https://reviews.llvm.org/D105586
In the spirit of TRegions [0], this patch provides a simpler and uniform
interface for a kernel to set up the device runtime. The OMPIRBuilder is
used for reuse in Flang. A custom state machine will be generated in the
follow up patch.
The "surplus" threads of the "master warp" will not exit early anymore
so we need to use non-aligned barriers. The new runtime will not have an
extra warp but also require these non-aligned barriers.
[0] https://link.springer.com/chapter/10.1007/978-3-030-28596-8_11
This was in parts extracted from D59319.
Reviewed By: ABataev, JonChesterfield
Differential Revision: https://reviews.llvm.org/D101976
Broke check-clang, see https://reviews.llvm.org/D102307#2869065
Ran `git revert -n ebbe149a6f08535ede848a531a601ae6591cfbc5..269416d41908bb670f67af689155d5ab8eea689a`
We had multiple functions to determine the execution mode (SPMD/Generic)
and runtime status (initialized/uninitialized) but that just increased
complexity without a real benefit. Especially with D102307 in mind it
is helpful to reduce the dependence on the `ident_t` flags.
Differential Revision: https://reviews.llvm.org/D105586
In the spirit of TRegions [0], this patch provides a simpler and uniform
interface for a kernel to set up the device runtime. The OMPIRBuilder is
used for reuse in Flang. A custom state machine will be generated in the
follow up patch.
The "surplus" threads of the "master warp" will not exit early anymore
so we need to use non-aligned barriers. The new runtime will not have an
extra warp but also require these non-aligned barriers.
[0] https://link.springer.com/chapter/10.1007/978-3-030-28596-8_11
This was in parts extracted from D59319.
Reviewed By: ABataev, JonChesterfield
Differential Revision: https://reviews.llvm.org/D101976
This patch is an attempt to do for `targetDataBegin` what D104924 does
for `targetDataEnd`:
* Eliminates a lock/unlock of the data mapping table.
* Clarifies the logic that determines whether a struct member's
host-to-device transfer occurs. The old logic, which checks the
parent struct's reference count, is a leftover from back when we had
a different map interface (as pointed out at
<https://reviews.llvm.org/D104924#2846972>).
Additionally, it eliminates the `DeviceTy::getMapEntryRefCnt`, which
is no longer used after this patch.
While D104924 does not change the computation of `IsLast`, I found I
needed to change the computation of `IsNew` for this patch. As far as
I can tell, the change is correct, and this patch does not cause any
additional `openmp` tests to fail. However, I'm not sure I've thought
of all use cases. Please advise.
Reviewed By: jdoerfert, jhuber6, protze.joachim, tianshilei1992, grokos, RaviNarayanaswamy
Differential Revision: https://reviews.llvm.org/D105121
The patch has the following benefits:
* Eliminates a lock/unlock of the data mapping table.
* Clarifies the logic that determines whether a struct member's
device-to-host transfer occurs. The old logic, which checks the
parent struct's reference count, is a leftover from back when we had
a different map interface (as pointed out at
<https://reviews.llvm.org/D104924#2846972>).
Reviewed By: grokos
Differential Revision: https://reviews.llvm.org/D104924
If the base is used in a map clause and later we have a memberexpr with
this base, and the member is a pointer, and this pointer is dereferenced
anyhow (subscript, array section, dereference, etc.), such components
should be considered as overlapped, otherwise it may lead to incorrect
size computations, since we try to map a pointee as a part of the whole
struct, which is not true for the pointer members.
Differential Revision: https://reviews.llvm.org/D105562
[libomptarget][nfc] Group environment variables, drop accesses to DeviceInfo global
Folds some duplicates logic into a helper function, passes the new environment
struct into getLaunchVals which no longer reads the DeviceInfo global.
Implemented on top of D105237
Reviewed By: dhruvachak
Differential Revision: https://reviews.llvm.org/D105239
D97883 introduced a compile-time error in the experimental remote offloading
libomptarget plugin, this patch fixes it and resolves a number of
inconsistencies in the plugin as well:
1. Non-functional Asynchronous API
2. Unnecessarily verbose debug printing
3. Misc. code clean ups
This is not intended to make any functional changes to the plugin.
Differential Revision: https://reviews.llvm.org/D105325
This patch includes the following changes to address a few issues when
using hidden helper task.
- Assertion is triggered when there are inadvertent calls to hidden
helper functions on non-Linux OS
- Added deinit code in __kmp_internal_end_library function to fix random
shutdown crashes
- Moved task data access into the lock-guarded region in __kmp_push_task
Differential Revision: https://reviews.llvm.org/D105308
`DeviceTy::getOrAllocTgtPtr` just returns a target pointer. In addition,
two bool values (`IsNew` and `IsHostPtr`) are passed by reference to make the
change in the function available in callee.
In this patch, a struct, which contains the target pointer, two flags, and an
iterator to the map table entry corresponding to the queried host pointer, will
be returned. In addition to make the logic clearer regarding the two bool values,
this paves the way for the next patch to fix the data race in `bug49334.cpp` by
attaching an event to the map table entry (and that's why we need the iterator).
Reviewed By: grokos
Differential Revision: https://reviews.llvm.org/D104382
This reverts commit 2240b41ee4.
A value of 0 for KernDescVal WG_Size implies it is unknown, so it should be
set to the default. The above change was made without this assumption.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D105250
A step towards making this function adequately self contained that it
can be tested easily. No functional change intended here, left variable
names unchanged.
Reviewed By: ronlieb
Differential Revision: https://reviews.llvm.org/D105229
Removes stdarg header, drops uses of iostream, fix some format string errors.
Also changes a C style struct to C++ style to avoid a warning from clang/
Reviewed By: pdhaliwal
Differential Revision: https://reviews.llvm.org/D104923
In our ongoing work, we are using `AbstractAttributor` to deduct execution model
of device functions, and potententially remove unnecessary function calls to
`__kmpc_is_spmd_exec_mode`. In current device runtime, we have mixed use of
`isSPMDMode` and `__kmpc_is_spmd_exec_mode`, but in fact in `__kmpc_is_spmd_exec_mode`
it simply calls `isSPMDMode`. Since all functions starting with `__kmpc` is C
function, which doesn't have things like name mangling. It is more optimization
friendly. In this patch, we simply replaced all calls to `isSPMDMode` with
`__kmpc_is_spmd_exec_mode` to pave the way for the optimization.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D105211
This patch is related to https://reviews.llvm.org/D98832. Based on discussions there, I decided to separate out the teams default as this patch. This change is to increase the number of teams per computation unit so as to provide more wavefronts for hiding latency. This change improves performance for some programs, including 20-50% for some Stream benchmarks.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D99003
When max flat workgroup size is not specified, it is set to the default
workgroup size. This prevents kernel launch with a workgroup size larger
than the default. The fix is to ignore a size of 0 and treat it as
unspecified.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D105073
This reverts commit eab1fd389b.
This commit fixed a problem with 25073a4ecf (D103121) which is the one
we actually need to revert to unblock non-X86 builds of OpenMP. Can be
reapplied, or merged into, D103121 as it goes in again.
This patch adds documentation for using the CMake find module for OpenMP
target offloading provided by LLVM. It also removes the requirement for
AMD's architecture to be set as this isn't necessary for upstream LLVM.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D105051
Add some information about the optimizations currently provided by
OpenMPOpt. Every optimization performed should eventually be listed
here.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D105050
The logic is almost similar to that of system.cpp with one change that
instead of adding all the memory pools to a device struct it only
keeps a single pool. The existing approach also always allocated memory on
the first HSA pool found for a GPU.
This depends on D104691. The goal of this series of patches is to remove
_atl_machine global. The next patch will drop g_atl_machine entirely.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D104695
[libomptarget][amdgpu] Build openmp for two more targets
The 4800U APU is a gfx902 and the MI100 accelerator is a gfx908.
Both numbers are listed in ROCT topology.c
Reviewed By: jhuber6
Differential Revision: https://reviews.llvm.org/D104922
Normalized bounds of chunk of iterations to steal from are inclusive,
so upper bound should not be decremented in expression to check.
Problem was in attempt to steal iterations 0:0, that caused assertion after
wrong decrement. Reported in comment to https://reviews.llvm.org/D103648.
Differential Revision: https://reviews.llvm.org/D104880
For example, without this patch:
```
$ cat test.c
int main() {
int x;
#pragma omp target enter data map(alloc: x)
#pragma omp target enter data map(alloc: x)
#pragma omp target enter data map(alloc: x)
#pragma omp target exit data map(delete: x)
;
return 0;
}
$ clang -fopenmp -fopenmp-targets=nvptx64-nvidia-cuda test.c
$ LIBOMPTARGET_DEBUG=1 ./a.out |& grep 'Creating\|Mapping exists\|last'
Libomptarget --> Creating new map entry with HstPtrBegin=0x00007ffddf1eaea8, TgtPtrBegin=0x00000000013bb040, Size=4, RefCount=1, Name=unknown
Libomptarget --> Mapping exists with HstPtrBegin=0x00007ffddf1eaea8, TgtPtrBegin=0x00000000013bb040, Size=4, RefCount=2 (incremented), Name=unknown
Libomptarget --> Mapping exists with HstPtrBegin=0x00007ffddf1eaea8, TgtPtrBegin=0x00000000013bb040, Size=4, RefCount=3 (incremented), Name=unknown
Libomptarget --> Mapping exists with HstPtrBegin=0x00007ffddf1eaea8, TgtPtrBegin=0x00000000013bb040, Size=4, RefCount=2 (decremented)
Libomptarget --> There are 4 bytes allocated at target address 0x00000000013bb040 - is not last
```
`RefCount` is reported as decremented to 2, but it ought to be reset
because of the `delete` map type, and `is not last` is incorrect.
This patch migrates the reset of reference counts from
`DeviceTy::deallocTgtPtr` to `DeviceTy::getTgtPtrBegin`, which then
correctly reports the reset. Based on the `IsLast` result from
`DeviceTy::getTgtPtrBegin`, `targetDataEnd` then correctly reports `is
last` for any deletion. `DeviceTy::deallocTgtPtr` is responsible only
for the final reference count decrement and mapping removal.
An obscure side effect of this patch is that a `delete` map type when
the reference count is infinite yields `DelEntry=IsLast=false` in
`targetDataEnd` and so no longer results in a
`DeviceTy::deallocTgtPtr` call. Without this patch, that call is a
no-op anyway besides some unnecessary locking and mapping table
lookups.
Reviewed By: grokos
Differential Revision: https://reviews.llvm.org/D104560
For example, without this patch:
```
$ cat test.c
int main() {
int x;
#pragma omp target enter data map(alloc: x)
#pragma omp target exit data map(release: x)
;
return 0;
}
$ clang -fopenmp -fopenmp-targets=nvptx64-nvidia-cuda test.c
$ LIBOMPTARGET_DEBUG=1 ./a.out |& grep 'Creating\|Mapping exists'
Libomptarget --> Creating new map entry with HstPtrBegin=0x00007ffcace8e448, TgtPtrBegin=0x00007f12ef600000, Size=4, Name=unknown
Libomptarget --> Mapping exists with HstPtrBegin=0x00007ffcace8e448, TgtPtrBegin=0x00007f12ef600000, Size=4, updated RefCount=1
```
There are two problems in this example:
* `RefCount` is not reported when a mapping is created, but it might
be 1 or infinite. In this case, because it's created by `omp target
enter data`, it's 1. Seeing that would make later `RefCount`
messages easier to understand.
* `RefCount` is still 1 at the `omp target exit data`, but it's
reported as `updated`. The reason it's still 1 is that, upon
deletions, the reference count is generally not updated in
`DeviceTy::getTgtPtrBegin`, where the report is produced. Instead,
it's zeroed later in `DeviceTy::deallocTgtPtr`, where it's actually
removed from the mapping table.
This patch makes the following changes:
* Report the reference count when creating a mapping.
* Where an existing mapping is reported, always report a reference
count action:
* `update suppressed` when `UpdateRefCount=false`
* `incremented`
* `decremented`
* `deferred final decrement`, which replaces the misleading
`updated` in the above example
* Add comments to `DeviceTy::getTgtPtrBegin` to explain why it does
not zero the reference count. (Please advise if these comments miss
the point.)
* For unified shared memory, don't report confusing messages like
`RefCount=` or `RefCount= updated` given that reference counts are
irrelevant in this case. Instead, just report `for unified shared
memory`.
* Use `INFO` not `DP` consistently for `Mapping exists` messages.
* Fix device table dumps to print `INF` instead of `-1` for an
infinite reference count.
Reviewed By: jhuber6, grokos
Differential Revision: https://reviews.llvm.org/D104559
This introduces a CMake find module for detecting target offloading support in
a compiler. The goal is to make it easier to incorporate target offloading into
a cmake project.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D104710
The OpenMP 5.1 standard defines the environment variable
`OMP_TEAMS_THREAD_LIMIT` to limit the number of threads that will be run in a
single block. This patch adds support for this into the AMDGPU and CUDA
plugins.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D103923
Currently the runtime implementation of `__kmpc_alloc_shared` is extremely slow because it allocated memory for each thread individually. This patch adds a small buffer for the threads to share data and will greatly improve performance for builds where all globalization could not be optimized out. If the shared buffer is full, then memory will not only be allocated per-warp rather than per-thread.
Depends on D97680
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D104666
Summary:
This patch introduces the new globalization runtime to be used by D97680. These
runtime calls will replace the __kmpc_data_sharing_push_stack and
__kmpc_data_sharing_pop_stack functions.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D102532
Restructured dynamic loop dispatcher code.
Fixed use of dispatch buffers for nonmonotonic dynamic (static_steal) schedule:
- eliminated possibility of stealing iterations of the wrong loop when victim
thread changed its buffer to work on another loop;
- fixed race when victim thread changed its buffer to work in nested parallel;
- eliminated "static" property of the schedule, that is now a single thread can
execute whole loop.
Differential Revision: https://reviews.llvm.org/D103648
There does not seem to be any use of these functions. They just
put the value to a local which is never used again.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D104512
`bug49334.cpp` cannot detect data race in `libomptarget` efficiently. It
is reported that with `N = 256` and `BS = 16`, the data race can be reproduced
more steadily. The next coming pathces will fix it so this patch is expected to
fail now.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D104552
Add an FAQ entry and add a few lines to an existing one. Document
the use of `GCC_INSTALL_PREFIX` for pointing clang to correct
GCC installation for two-stage build.
Reviewed By: jhuber6
Differential Revision: https://reviews.llvm.org/D104474
Two-level distributed barrier is a new experimental barrier designed
for Intel hardware that has better performance in some cases than the
default hyper barrier.
This barrier is designed to handle fine granularity parallelism where
barriers are used frequently with little compute and memory access
between barriers. There is no need to use it for codes with few
barriers and large granularity compute, or memory intensive
applications, as little difference will be seen between this barrier
and the default hyper barrier. This barrier is designed to work
optimally with a fixed number of threads, and has a significant setup
time, so should NOT be used in situations where the number of threads
in a team is varied frequently.
The two-level distributed barrier is off by default -- hyper barrier
is used by default. To use this barrier, you must set all barrier
patterns to use this type, because it will not work with other barrier
patterns. Thus, to turn it on, the following settings are required:
KMP_FORKJOIN_BARRIER_PATTERN=dist,dist
KMP_PLAIN_BARRIER_PATTERN=dist,dist
KMP_REDUCTION_BARRIER_PATTERN=dist,dist
Branching factors (set with KMP_FORKJOIN_BARRIER, KMP_PLAIN_BARRIER,
and KMP_REDUCTION_BARRIER) are ignored by the two-level distributed
barrier.
Differential Revision: https://reviews.llvm.org/D103121
This change-set removes libelf usage from elf_common part of the plugins.
libelf is still used in x86_64 generic plugin code and in some plugins
(e.g. amdgpu) - these will have to be cleaned up in separate checkins.
Differential Revision: https://reviews.llvm.org/D103545
Refactored code of dependence processing and added new inoutset dependence type.
Compiler can set dependence flag to 0x8 when call __kmpc_omp_task_with_deps.
All dependence flags library gets so far and corresponding dependence types:
1 - IN, 2 - OUT, 3 - INOUT, 4 - MUTEXINOUTSET, 8 - INOUTSET.
Differential Revision: https://reviews.llvm.org/D97085
Several variables were left unused as a result of different patches removing
their use.
Two variables have some use:
`poll_count` is used by the KMP_BLOCKING macro only under certain conditions.
Adding (void) to tell the compiler to ignore the unused variable.
`padding` is a dummy stack allocation with no intent to be used. Also adding
(void) to make the compiler ignore the unused variable.
Differential Revision: https://reviews.llvm.org/D104303
* Add GOMP versioned pause functions
* Add GOMP versioned affinity format functions
To do the affinity format functions, only attach versioned symbols
to the APPEND Fortran entries (e.g., omp_set_affinity_format_) since
GOMP only exports two symbols (one for Fortran, one for C). Our
affinity format functions have three symbols.
e.g., with omp_set_affinity_format:
1) omp_set_affinity_format (Fortran interface)
2) omp_set_affinity_format_ (Fortran interface)
3) ompc_set_affinity_format (C interface)
Have the GOMP version of the C symbol alias the ompc_* 3) version
instead of the Fortran unappended version 1).
Differential Revision: https://reviews.llvm.org/D103647
Remove strange checks for syscall() arguments where mask is NULL.
Valgrind reports these as error usages for the syscall.
Instead, just check if CACHE_LINE bytes is long enough. If not, then
search for the size. Also, by limiting the first size detection
attempt to CACHE_LINE bytes, instead of 1MB, we don't use more than one
cache line for the mask size. Before this patch, sometimes the returned
mask size was 640 bytes (10 cache lines) because the initial call to
getaffinity() was limited only by the internal kernel mask size
which can be very large.
Differential Revision: https://reviews.llvm.org/D103637
Lazily set affinity for root threads. Previously, the root thread
executing middle initialization would attempt to assign affinity
to other existing root threads. This was not working properly as the
set_system_affinity() function wasn't setting the affinity for the
target thread. Instead, the middle init thread was resetting the
its own affinity using the target thread's affinity mask.
Differential Revision: https://reviews.llvm.org/D103625
This patch includes some changes which deletes the code accessing
g_atl_machine global. Some accesses related to memory_pools are
still remaining.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D103813
The current handling of dependencies in Archer has two flaws:
- annotation of dependency synchronization is not limited to sibling tasks
- annotation of in/out dependencies is based on the assumption, that dependency
variables will rarely be byte-sized variables.
This patch introduces a map in the generating task to manage the dependency
variables for the child tasks. The map is only accesses from the generating
task, so no locking is necessary. This also limits the dependency-based
synchronization to sibling tasks.
This patch also introduces proper handling for new dependency types such as
mutexinoutset and inoutset.
Differential Revision: https://reviews.llvm.org/D103608
The main motivation for reusing objects is that it helps to avoid creating and
leaking synchronization clocks in TSan. The reused object will reuse the
synchronization clock in TSan.
Before, new and delete operators were overloaded to get and return memory for
the object from/to the object pool.
This patch replaces the operator overloading with explicit static New/Delete
functions.
Objects for parallel regions and implicit tasks will always be recruited and
returned to the thread-local object pool. Only for explicit task, there is a
chance that an other thread completes the task and will free the object. This
patch optimizes the thread-local New/Delete calls by avoiding locks and only
lock if the pool is empty. Remote threads return the object into a separate
queue.
The chunk size for allocations is now decided based on page size. The objects
will also be aligned to cache lines avoiding false sharing.
This is the first patch in a series to provide better tasking support.
Differential Revision: https://reviews.llvm.org/D103606
Archer uses weak symbol overloads of TSan functions to enable loading the tool
even if the application is not built with TSan. For MACOS the tool collects
the function pointer at runtime.
When adding the function entry/exit markers, we missed to add the functions
in the MACOS codepath.
This patch also replaces the repeated function lookup by a single initial
function lookup and fixes the disabling logic in RunningOnValgrind.
Differential Revision: https://reviews.llvm.org/D103607
This patch adds an information flag that indicated when data is being copied to
and from the device. This will be helpful for finding redundant or unnecessary
data transfers in applications.
Reviewed By: jdoerfert, grokos
Differential Revision: https://reviews.llvm.org/D103927
This is the first of seven patches that implements OMPD, a debugging interface to support debugging of OpenMP programs.
It contains support code required in "openmp/runtime" for OMPD implementation.
Reviewed By: @hbae
Differential Revision: https://reviews.llvm.org/D100181
Refactored code of dependence processing and added new inoutset dependence type.
Compiler can set dependence flag to 0x8 when call __kmpc_omp_task_with_deps.
Size of type of the dependence flag changed from 1 to 4 bytes in clang.
All dependence flags library gets so far and corresponding dependence types:
1 - IN, 2 - OUT, 3 - INOUT, 4 - MUTEXINOUTSET, 8 - INOUTSET.
Differential Revision: https://reviews.llvm.org/D97085
The ident_t * argument in __kmp_get_monotonicity was being used without
a customary NULL check, causing the function to crash in a Debug build.
Release builds were not affected thanks to dead store elimination.
This global struct used to hold various flags for monitoring the
initialization of hsa.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D103795
Previous logic was to always use the first kernarg pool found to allocate
kernel args. This patch changes this to use only the kernarg pool which
has non-zero size. This logic is also reworked to not use any globals.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D103600
Nesting mode is a new experimental feature in the OpenMP
runtime. It allows a user to set up nesting for an application in a
way that corresponds to the hardware topology levels on the machine an
application is being run on. For example, if a machine has 2 sockets,
each with 12 cores, then use of nesting mode could set up an outer
level of nesting that uses 2 threads per parallel region, and an inner
level of nesting that uses 12 threads per parallel region.
Nesting mode is controlled with the KMP_NESTING_MODE environment
variable as follows:
1) KMP_NESTING_MODE = 0: Nesting mode is off (default); max-active-levels-var
is set to 1 (the default -- nesting is off, nested parallel regions
are serialized).
2) KMP_NESTING_MODE = 1: Nesting mode is on, and a number of threads
will be assigned for each level discovered in the machine topology;
max-active-levels-var is set to the number of levels discovered.
3) KMP_NESTING_MODE = n, n>1: [Note: this option is experimental and may change
or be removed in the future.] Nesting mode is on, and a number of
threads will be assigned for each topology level discovered on the
machine, up to k<=n levels (since there may be fewer than n levels
discovered in the topology), and beyond the kth level, nested parallel
regions will be serialized; NOTE: max-active-levels-var is 1 (the default --
nesting is off, and nested parallel regions are serialized until the
user changes max-active-levels-var.
If the user sets OMP_NUM_THREADS or OMP_MAX_ACTIVE_LEVELS, they will
override KMP_NESTING_MODE settings for the associated environment
variables. The detected topology may be limited by an affinity mask
setting on the initial thread, or if the user sets KMP_HW_SUBSET. See
also: KMP_HOT_TEAMS_MAX_LEVEL for controlling use of hot teams for
nested parallel regions. Note that this feature only sets numbers of
threads used at nesting levels. The user should make use of
OMP_PLACES and OMP_PROC_BIND or KMP_AFFINITY for affinitizing those
threads, if desired.
Differential Revision: https://reviews.llvm.org/D102188
When on KNL and L2 or Tile layer is detected, manually add
the corresponding layer which is equivalent.
Differential Revision: https://reviews.llvm.org/D102865
Turns out the only purpose of this class was verify if device ID
was in range or not which could be done easily by using g_atl_machine.
Still getting rid of g_atl_machine is pending which would be done in
a later patch.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D103443
This struct was used to specify the device on which memory was
being allocated/free in atmi_malloc/free. It has now been replaced
with int DeviceId.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D103239
Refactor suggested in D103037 to help avoid similar copy-paste errors.
Change is mechanical. Some parts of this would be more robust with unsigned.
Reviewed By: dhruvachak
Differential Revision: https://reviews.llvm.org/D103090
Suggested in D103059. Use a single lookup instead of two, more const, less mutation.
Reviewed By: dhruvachak
Differential Revision: https://reviews.llvm.org/D103093
ATMI_STATUS_UNKNOWN was unused, deleted references to it.
Replaced ATMI_STATUS_{SUCCESS,ERROR} with HSA_STATUS_{SUCCESS,ERROR}
Replaced atmi_status_t with hsa_status_t
Otherwise no change. In particular, conversions between atmi_status_t and
hsa_status_t will now be conversions between hsa_status_t and itself.
Reviewed By: pdhaliwal
Differential Revision: https://reviews.llvm.org/D103115
This patch drops g_atmi_initialized and inlines the Initialize &
Finalize methods from Runtime class.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D102847
Two globals KernelInfoTable & SymbolInfoTable are moved
into RTLDeviceInfoTy class.
This builds on the top of D102691.
[2/2]
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D102692
[libomptarget][nfc] Move hostcall required test to rtl
Remove a global, fix minor race. First of N patches to bring up hostcall.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D103058
Fix the case where NumTeams was set incorrectly instead of NumThreads
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D103037
KernelNameMap contains entries like "key.kd" => key which clearly
could be replaced by simple logic of removing suffix from the key.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D102691
Warnings on deprecated api cannot be suppressed if the library is not initialized.
With this change it is possible to set KMP_WARNINGS=false to suppress the warnings.
Differential Revision: https://reviews.llvm.org/D102676
The check for the TO flag when processing firstprivates is missing. As a result,
sometimes the device copy of a firstprivate never gets initialized. Currectly we
try to force lambda structs to be allocated immediately by marking them as a
non-firstprivate, so that PrivateArgumentManagerTy::addArg allocates memory for
them immediately. However, calling addArg with IsFirstPrivate=false makes the
function skip initializing the device copy. Whether an argument is firstprivate
and whether we need to allocate memory immediately are not synonyms, so this
patch introduces one more control variable for immediate allocation and sets it
apart from initialization.
Differential Revision: https://reviews.llvm.org/D102890
[libomptarget][amdgpu] Mark alloc, free weak to facilitate local experimentation
There are a lot of different ways we might implement the devicertl local alloc
and free functions. Via host, local buffers (stack or arena), specialising per
kernel etc. It is not yet clear what the right design is. This change makes the
alloc and free functions weak, so one can override them from local tests while
comparing options.
Not strictly necessary, as a comparable patch can be applied locally each time,
but would be convenient for out of tree dev. Plan would be to drop the weak
attribute at the same time as introducing a working allocator to trunk.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D102499
[libomptarget] Improve dlwrap compile time error diagnostic
The dlwrap interface takes an explict arity, e.g. DLWRAP(cuAlloc, 2);
This probably can't be eliminated as it controls the argument list of an
external symbol, not an inline header function. If the arity given is too
big, the error from clang referring to the line is in the middle of
implementation details.
/usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/tuple:1277:7: error: static_assert failed
due to requirement '0UL < tuple_size<std::tuple<>>::value' "tuple index is in range"
static_assert(__i < tuple_size<tuple<>>::value,
^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/tuple:1260:7: ...
/usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/tuple:1260:7: ...
/home/amd/llvm-project/openmp/libomptarget/include/dlwrap.h:93:27 ...
/home/amd/llvm-project/openmp/libomptarget/plugins/cuda/dynamic_cuda/cuda.cpp:34:1: note: in
instantiation of template class 'dlwrap::trait<cudaError_enum (*)(unsigned long *, unsigned
long)>::arg<2>' requested here
DLWRAP(cuMemAlloc, 3);
^
/home/amd/llvm-project/openmp/libomptarget/include/dlwrap.h:51:31: ...
/home/amd/llvm-project/openmp/libomptarget/include/dlwrap.h:166:3: ...
/home/amd/llvm-project/openmp/libomptarget/include/dlwrap.h:133:3: ...
/home/amd/llvm-project/openmp/libomptarget/include/dlwrap.h:186:37: ...
If the arity is too small, the diagnostic is better:
cuda/dynamic_cuda/cuda.cpp:34:1: error: too few
arguments to function call, expected 2, have 1
DLWRAP(cuMemAlloc, 1);
This patch changes the diagnostic to:
cuda/dynamic_cuda/cuda.cpp:34:1: error:
static_assert failed due to requirement '1 == trait<cudaError_enum (*)(unsigned long *, unsigned
long)>::nargs' "Arity Error"
DLWRAP(cuMemAlloc, 1);
or
cuda/dynamic_cuda/cuda.cpp:34:1: error:
static_assert failed due to requirement '3 == trait<cudaError_enum (*)(unsigned long *, unsigned
long)>::nargs' "Arity Error"
DLWRAP(cuMemAlloc, 3);
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D102858
[libomptarget][amdgpu] Remove majority of fatal errors
Replaces most calls to exit() with returning an error to the library entry
point. Minor changes to error handling for clear bugs, remove some dead code.
Each exit() call site replaced is either in a library entry point or a
function that already returns error codes on some paths. The existing handling
is not well tested but replacing exit() with a fallback path should be a strict
improvement.
Remaining two early exit points are an abort() from a callback and exit() from
within msgpack. Fixes for those are less obvious and left for a later patch.
Reviewed By: pdhaliwal
Differential Revision: https://reviews.llvm.org/D102346
[libomptarget] Disable test bug49334 on amdgpu
Hangs on amdgpu, do not know why. Disable to unblock build.
Reviewed By: ye-luo
Differential Revision: https://reviews.llvm.org/D102017
This patch moves g_executables to private member of Runtime class
and is renamed to HSAExecutables following LLVM naming convention.
This movement required making Runtime::Initialize and Runtime::Finalize
non-static. Verified the correctness of this change by running
libomptarget tests on gfx906.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D102600
This initial patch removes some unused variables from global namespace.
There will more incoming patches for moving global variables to classes
or static members.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D102598
Bug 49356 (https://bugs.llvm.org/show_bug.cgi?id=49356) reports crash in
the test case `tasking/bug_taskwait_detach.cpp`, which is caused by the wrong
function declaration. `gtid` in `__kmpc_omp_task` should be `kmp_int32`.
Reviewed By: AndreyChurbanov
Differential Revision: https://reviews.llvm.org/D102584
[libomptarget][amdgpu] Fix truncation error for partial wavefront
The partial barrier implementation involves one wavefront resetting and N-1
waiting. This change future proofs against launching with a number of threads
that is not a multiple of the wavefront size.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D102407
[libomptarget][amdgpu] Convert an assert to print and offload_fail
The kernel launched is supposed to be present in the binary, but a not yet
diagnosed bug means it is missing for some of the qmcpack test cases. Changing
from assert to print and offload_fail should help diagnose that and similar bugs.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D102378
Add a `REQUIRES: unified_shared_memory` option to tests that use `#pragma omp requires unified_shared_memory`.
For CUDA, the feature tag is derived from LIBOMPTARGET_DEP_CUDA_ARCH which itself is derived using [[ https://cmake.org/cmake/help/latest/module/FindCUDA.html#commands | cuda_select_nvcc_arch_flags ]]. The latter determines which compute capability the GPU in the system supports. To ensure that this is the CUDA arch being used, we could also set the `-Xopenmp-target -march=` flag.
In the absence of an NVIDIA GPU, LIBOMPTARGET_DEP_CUDA_ARCH will be 35. That is, in that case we are assuming unified_shared_memory is not available. CUDA plugin testing could be disabled entirely in this case, but this currently depends on `LIBOMPTARGET_CAN_LINK_LIBCUDA OR LIBOMPTARGET_FORCE_DLOPEN_LIBCUDA`, not on whether the hardware is actually available.
For all other targets, nothing changes and we are assuming unified shared memory is available. This might need refinement if not the case.
This tries to fix the [[ http://meinersbur.de:8011/#/builders/143 | OpenMP Offloading Buildbot ]] that, although brand-new, only has a Pascal-generation (sm_61) GPU installed. Hence, tests that require unified shared memory are currently failing. I wish I had known in advance.
Reviewed By: protze.joachim, tianshilei1992
Differential Revision: https://reviews.llvm.org/D101498
[libomptarget][amdgpu][nfc] Expand errorcheck macros
These macros expand to continue, which is confusing, or exit,
which is incompatible with continuing execution on offloading fail.
Expanding the macros in place makes the code look untidy but the
control flow obvious and amenable to improving. In particular, exit
becomes easier to eliminate.
Reviewed By: pdhaliwal
Differential Revision: https://reviews.llvm.org/D102230
This is the first in a series of changes to the OpenMP runtime
that have been done internally by Microsoft. This patch makes
the necessary changes to enable libomp.dll to build with
the MSVC compiler targeting ARM64.
Differential Revision: https://reviews.llvm.org/D101173
[libomptarget][nfc] Add hook to easily disable building amdgcn bclib
This is useful when building LLVM with a toolchain that can't emit code
for amdgcn, e.g. because it overrides the include search path with headers
from another architecture, or the clang compiler is missing builtins.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D102229
When KMP_AFFINITY is set, each worker thread's gtid value is used as an
index into the place list to determine the thread's placement. With hidden
helpers enabled, this gtid value is shifted down leading to unexpected
shifted thread placement. This patch restores the previous behavior by
adjusting the mask index to take the number of hidden helper threads
into account.
Hidden helper threads are given the full initial mask and do not
participate in any of the other affinity mechanisms (place partitioning,
balanced affinity). Their affinity is only printed for debug builds.
Differential Revision: https://reviews.llvm.org/D101882
[libomptarget] Add support for target allocators to dynamic cuda RTL
Follow on to D102000 which introduced new calls into libcuda. This patch adds
the corresponding entry points to dynamic_cuda, fixing the build for systems
that do not have the cuda toolkit installed.
Function types and enum from https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__MEM.html
Reviewed By: pdhaliwal
Differential Revision: https://reviews.llvm.org/D102169
This patch prevents runtime tests running on systems without amdgpu.
Reviewed By: protze.joachim, tianshilei1992
Differential Revision: https://reviews.llvm.org/D102054
I want to start using LLVM component libraries in libomptarget
to stop duplicating implementations already available in LLVM
(e.g. LLVMObject, LLVMSupport, etc.). Without relying on LLVM
in all libomptarget builds one has to provide fallback implementation
for each used LLVM feature.
This is an attempt to stop supporting out-of-llvm-tree builds of libomptarget.
I understand that I may need to revert this,
if this affects downstream projects in a bad way.
Differential Revision: https://reviews.llvm.org/D101509
Summary:
The allocator interface added in D97883 allows the RTL to allocate shared and
host-pinned memory from the cuda plugin. This patch adds support for these to
the runtime.
Reviewed By: grokos
Differential Revision: https://reviews.llvm.org/D102000
[libomptarget][nfc] Refactor amdgpu partial barrier to simplify adding a second one
D101976 would require a second barrier instance. This NFC to amdgpu makes it
simpler to add one (an extra global, one more line in init). Also renames the
current barrier to L0.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D102016
[libomptarget][amdgpu][nfc] Remove dead code from amdgpu plugin
Drops an enum that was identical to a HSA one, localises some functions where
they were only called from one TU. Covers everything internalize + adce can
identify as dead, except for msgpack::dump which is useful when debugging.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D102014
This patch does the following:
1) Introduce kmp_topology_t as the runtime-friendly structure (the
corresponding global variable is __kmp_topology) to determine the
exact machine topology which can vary widely among current and future
architectures. The current design is not easy to expand beyond the assumed
three layer topology: sockets, cores, and threads so a rework capable of
using the existing KMP_AFFINITY mechanisms is required.
This new topology structure has:
* The depth and types of the topology
* Ratio count for each consecutive level (e.g., number of cores per
socket, number of threads per core)
* Absolute count for each level (e.g., 2 sockets, 16 cores, 32 threads)
* Equivalent topology layer map (e.g., Numa domain is equivalent to
socket, L1/L2 cache equivalent to core)
* Whether it is uniform or not
The hardware threads are represented with the kmp_hw_thread_t
structure. This structure contains the ids (e.g., socket 0, core 1,
thread 0) and other information grabbed from the previous Address
structure. The kmp_topology_t structure contains an array of these.
2) Generalize the KMP_HW_SUBSET envirable for the new
kmp_topology_t structure. The algorithm doesn't assume any order with
tiles,numa domains,sockets,cores,threads. Instead it just parses the
envirable, makes sure it is consistent with the detected topology
(including taking into account equivalent layers) and then trims away
the unneeded subset of hardware threads. To enable this, a new
kmp_hw_subset_t structure is introduced which contains a vector of
items (hardware type, number user wants, offset). Any keyword within
__kmp_hw_get_keyword() can be used as a name and can be shortened as
well. e.g.,
KMP_HW_SUBSET=1s,2numa,4tile,2c,3t can be used on the KNL SNC-4 machine.
3) Simplify topology detection functions so they only do the singular
task of detecting the machine's topology. Printing, and all
canonicalizing functionality is now done afterwards. So many lines of
duplicated code are eliminated.
4) Add new ll_caches and numa_domains to OMP_PLACES, and
consequently, KMP_AFFINITY's granularity setting. All the names within
__kmp_hw_get_keyword() are available for use in OMP_PLACES or
KMP_AFFINITY's granularity setting.
5) Simplify and future-proof code where explicit lists of allowed
affinity settings keywords inside if() conditions.
6) Add x86 CPUID leaf 4 cache detection to existing x2apic id method
so equivalent caches could be detected (in particular for the ll_caches
place).
Differential Revision: https://reviews.llvm.org/D100997
This enables the runtime tests on amdgpu targets.
10 tests have been marked as XFAIL on amdgcn currently mostly due to
missing printf.
Reviewed By: protze.joachim
Differential Revision: https://reviews.llvm.org/D99656
Getting my feet wet here as a new committer.
Correct misspelling in check-depends.pl.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D101552
If available, use the clang that is already built in the same project as
CUDA compiler unless another executable is explicitly defined. This also
ensures the generated deviceRTL IR will be consistent with the version
of Clang.
This patch is required to reliably test OpenMP offloading in a buildbot
without either a two-stage build (e.g. with LLVM_ENABLE_RUNTIMES) or a
separately installed clang on the worker that will eventually become
outdated.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D101265
The OpenMP runtime can be compiled using a CUDA installed at non-default
location with the -DCUDA_TOOLKIT_ROOT_DIR setting. However, check-openmp
will fail afterwards because Clang needs to know where to find the CUDA
headers.
Fix by passing -cuda-path to Clang using the value of
CUDA_TOOLKIT_ROOT_DIR which has been determined by CMake. Also set
LD_LIBRARY_PATH such that it can find the cuda runtime when executing.
This will ensure that the regression test do not depend on the current
environment, but use the environment it was configured for.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D101266
This patch fuses the RUN lines for most libomptarget tests. The previous patch
D101315 created separate test targets for each supported offloading triple.
This patch updates the RUN lines in libomptarget tests to use a generic run
line independent of the offloading target selected for the lit instance.
In cases, where no RUN line was defined for a specific offloading target,
the corresponding target is declared as XFAIL. If it turns out that a test
actually supports the target, the XFAIL line can be removed.
Differential Revision: https://reviews.llvm.org/D101326
This patch creates a separate test directory for each offloading target to be
tested. This allows to test multiple architectures in one configuration, while
still see all failing tests separately. The lit test names include the target
triple, so that it will be easier to spot the failing target.
This patch also allows to mark expected failing tests based on the
target-triple, as the currently used triple is added to the lit "features":
```
// XFAIL: nvptx64-nvidia-cuda
```
Differential Revision: https://reviews.llvm.org/D101315
[libomptarget] Enable AMDGPU devicertl
The amdgpu devicertl is written in freestanding openmp and compiles to a
bitcode library (per listed gfx arch) with no unresolved symbols. It requires
a recent clang, preferably the one from the same monorepo checkout.
This is D98658, with printf explicitly stubbed out, after patching clang to no
longer require an llvm with the amdgpu target enabled.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D101213
Summary:
This patch improves the implementation of D100774 by replacing the global
variable introduced with a function that returns a reference to an internal
one. This removes the need to define the variable in every plugin that uses it.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D101102
Summary:
This patch adds a new runtime function __tgt_set_info_flag that allows the
user to set the information level at runtime without using the environment
variable. Using this will require an extern function, but will eventually be
added into an auxilliary library for OpenMP support functions.
This patch required moving the current InfoLevel to a global variable which must
be instantiated by each plugin.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D100774
This revision simplifies Clang codegen for parallel regions in OpenMP GPU target offloading and corresponding changes in libomptarget: SPMD/non-SPMD parallel calls are unified under a single `kmpc_parallel_51` runtime entry point for parallel regions (which will be commonized between target, host-side parallel regions), data sharing is internalized to the runtime. Tests have been auto-generated using `update_cc_test_checks.py`. Also, the revision contains changes to OpenMPOpt for remark creation on target offloading regions.
Reviewed By: jdoerfert, Meinersbur
Differential Revision: https://reviews.llvm.org/D95976
The implicitly generated mappings for allocation/deallocation in mappers
runtime should be mapped as implicit, also no need to clear member_of
flag to avoid ref counter increment. Also, the ref counter should not be
incremented for the very first element that comes from the mapper
function.
Differential Revision: https://reviews.llvm.org/D100673
Implement the remaining GOMP_* functions to support task reductions
in taskgroup, parallel, loop, and taskloop constructs. The unused mem
argument to many of the work-sharing constructs has to do with the
scan() directive/ inscan() modifier. If mem is set, each function
will call KMP_FATAL() and tell the user scan/inscan is unsupported. The
GOMP reduction implementation is kept separate from our implementation
because of how GOMP presents reduction data and computes the reductions.
GOMP expects the privatized copies to be present even after a #pragma
omp parallel reduction(task:...) region has ended so the data is stored
inside GOMP's uintptr_t* data pseudo-structure. This style is tightly
coupled with GCC compiler codegen. There also isn't any init(),
combiner(), fini() functions in GOMP's codegen so the two
implementations were to disparate to try to wrap GOMP's around our own.
Differential Revision: https://reviews.llvm.org/D98806
Current atfork() handler for child processes does not reset
the affinity masks array which prevents users from setting their own
affinity in child processes.
Differential Revision: https://reviews.llvm.org/D99218
Summary:
This patch adds a feature to print information whenever the host-device pointer
mapping table is changed by inserting or removing an entry. This introduces a
new bit field for LIBOMPTARGET_INFO at position 0x8.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D100600
omp_is_initial_device() is marked as a built-in function in the current
compiler, and user code guarded by this call may be optimized away,
resulting in undesired behavior in some cases. This patch provides a
possible fix for such cases by defining the routine as a variant
function and removing it from builtin list.
Differential Revision: https://reviews.llvm.org/D99447
The second argument to the strnlen_s(str, size) function should be
sizeof(str) when str is a true array of characters with known size
(instead of just a char*). Use type traits to determine if first
parameter is a character array and use the correct size based on that
trait.
Differential Revision: https://reviews.llvm.org/D98209
Summary:
Remove some of the error messages printed when the CUDA plugin fails. The current error messages can be confusing because they are the first error messages printed after the async stream finds an error. This means that the printed values aren't related to what caused the issue, but are simply the last asyncronous operation that succeeded on the device. Remove these as they can be misleading.
Reviewers: jdoerfert
Differential Revision: https://reviews.llvm.org/D99510
Summary:
If the call to `synchronize` fails, it will currently block the stream indefinitely if execution is continued from this point. Additionally, if the program exits it will trigger an assertion on the non-null value of the async queue and prevent the runtime from printing debugging information.
Reviewers: jdoerfert
Differential Revision: https://reviews.llvm.org/D99443
-- Added or moved checks to appropriate places.
-- Removed ineffective null check where the pointer is already being
dereferenced around the code.
-- Initialized variables that can be used without definitions.
-- Added call to dlclose/FreeLibrary in OMPT tool activation.
-- Added a new build compiler definition.
Differential Revision: https://reviews.llvm.org/D98584
It is reported that after enabling hidden helper thread, the program
can hit the assertion `new_gtid < __kmp_threads_capacity` sometimes. The root
cause is explained as follows. Let's say the default `__kmp_threads_capacity` is
`N`. If hidden helper thread is enabled, `__kmp_threads_capacity` will be offset
to `N+8` by default. If the number of threads we need exceeds `N+8`, e.g. via
`num_threads` clause, we need to expand `__kmp_threads`. In
`__kmp_expand_threads`, the expansion starts from `__kmp_threads_capacity`, and
repeatedly doubling it until the new capacity meets the requirement. Let's
assume the new requirement is `Y`. If `Y` happens to meet the constraint
`(N+8)*2^X=Y` where `X` is the number of iterations, the new capacity is not
enough because we have 8 slots for hidden helper threads.
Here is an example.
```
#include <vector>
int main(int argc, char *argv[]) {
constexpr const size_t N = 1344;
std::vector<int> data(N);
#pragma omp parallel for
for (unsigned i = 0; i < N; ++i) {
data[i] = i;
}
#pragma omp parallel for num_threads(N)
for (unsigned i = 0; i < N; ++i) {
data[i] += i;
}
return 0;
}
```
My CPU is 20C40T, then `__kmp_threads_capacity` is 160. After offset,
`__kmp_threads_capacity` becomes 168. `1344 = (160+8)*2^3`, then the assertions
hit.
Reviewed By: protze.joachim
Differential Revision: https://reviews.llvm.org/D98838