InlineSpiller inserts loads and spills immediately instead of deferring to
VirtRegMap. This is possible now because SlotIndexes allows instructions to be
inserted and renumbered.
This is work in progress, and is mostly a copy of TrivialSpiller so far. It
works very well for functions that don't require spilling.
llvm-svn: 107227
metadata types which should be marked as "weak", but which the linker will
remove upon final linkage. For example, the "objc_msgSend_fixup_alloc" symbol is
defined like this:
.globl l_objc_msgSend_fixup_alloc
.weak_definition l_objc_msgSend_fixup_alloc
.section __DATA, __objc_msgrefs, coalesced
.align 3
l_objc_msgSend_fixup_alloc:
.quad _objc_msgSend_fixup
.quad L_OBJC_METH_VAR_NAME_1
This is different from the "linker_private" linkage type, because it can't have
the metadata defined with ".weak_definition".
llvm-svn: 107205
A partial redefine needs to be treated like a tied operand, and the register
must be reloaded while processing use operands.
This fixes a bug where partially redefined registers were processed as normal
defs with a reload added. The reload could clobber another use operand if it was
a kill that allowed register reuse.
llvm-svn: 107193
The LowerSubregs pass needs to preserve implicit def operands attached to
EXTRACT_SUBREG instructions when it replaces those instructions with copies.
llvm-svn: 107189
is stripped off. Currently set unconditionally, since the API
does not provide a way of working out if anything was actually
stripped off.
llvm-svn: 107142
of getPhysicalRegisterRegClass with it.
If we want to make a copy (or estimate its cost), it is better to use the
smallest class as more efficient operations might be possible.
llvm-svn: 107140
in terms of Op<> and ArgOffset. This works for
values of {0, 1} for ArgOffset.
Please note that ArgOffset will become 0 soon and
will go away eventually.
llvm-svn: 107129
instruction to an add scev, it's not safe to blindly transfer the
inbounds flag from a gep instruction to an nsw on the scev for the
gep.
llvm-svn: 107117
There are 2 changes relative to the previous version of the patch:
1) For the "simple" if-conversion case, there's no need to worry about
RemoveExtraEdges not handling an unanalyzable branch. Predicated terminators
are ignored in this context, so RemoveExtraEdges does the right thing.
This might break someday if we ever treat indirect branches (BRIND) as
predicable, but for now, I just removed this part of the patch, because
in the case where we do not add an unconditional branch, we rely on keeping
the fall-through edge to CvtBBI (which is empty after this transformation).
The change relative to the previous patch is:
@@ -1036,10 +1036,6 @@
IterIfcvt = false;
}
- // RemoveExtraEdges won't work if the block has an unanalyzable branch,
- // which is typically the case for IfConvertSimple, so explicitly remove
- // CvtBBI as a successor.
- BBI.BB->removeSuccessor(CvtBBI->BB);
RemoveExtraEdges(BBI);
// Update block info. BB can be iteratively if-converted.
2) My patch exposed a bug in the code for merging the tail of a "diamond",
which had previously never been exercised. The code was simply checking that
the tail had a single predecessor, but there was a case in
MultiSource/Benchmarks/VersaBench/dbms where that single predecessor was
neither edge of the diamond. I added the following change to check for
that:
@@ -1276,7 +1276,18 @@
// tail, add a unconditional branch to it.
if (TailBB) {
BBInfo TailBBI = BBAnalysis[TailBB->getNumber()];
- if (TailBB->pred_size() == 1 && !TailBBI.HasFallThrough) {
+ bool CanMergeTail = !TailBBI.HasFallThrough;
+ // There may still be a fall-through edge from BBI1 or BBI2 to TailBB;
+ // check if there are any other predecessors besides those.
+ unsigned NumPreds = TailBB->pred_size();
+ if (NumPreds > 1)
+ CanMergeTail = false;
+ else if (NumPreds == 1 && CanMergeTail) {
+ MachineBasicBlock::pred_iterator PI = TailBB->pred_begin();
+ if (*PI != BBI1->BB && *PI != BBI2->BB)
+ CanMergeTail = false;
+ }
+ if (CanMergeTail) {
MergeBlocks(BBI, TailBBI);
TailBBI.IsDone = true;
} else {
With these fixes, I was able to run all the SingleSource and MultiSource
tests successfully.
llvm-svn: 107110
have to be registers, per gcc documentation. This affects
the logic for determining what "g" should lower to. PR 7393.
A couple of existing testcases are affected.
llvm-svn: 107079
When an instruction has tied operands and physreg defines, we must take extra
care that the tied operands conflict with neither physreg defs nor uses.
The special treatment is given to inline asm and instructions with tied operands
/ early clobbers and physreg defines.
This fixes PR7509.
llvm-svn: 107043
large integers, the first inserted value would always create
an 'or X, 0'. Even though this is trivially zapped by
instcombine, don't bother creating this pointless instruction.
llvm-svn: 106979
the returned value after the tail call if it differs from other return
values. The optimal thing to do would be to introduce a phi node for
the return value, but for the moment just fix the miscompile.
llvm-svn: 106947
if-conversion. The RemoveExtraEdges function doesn't work for blocks that
end with unanalyzable branches, so in those cases, the "extra" edges must
be explicitly removed. The CopyAndPredicateBlock and MergeBlocks methods
can also avoid copying successor edges due to branches that have already
been removed. The latter case is especially helpful when MergeBlocks is
called for handling "diamond" if-conversions, where otherwise you can end
up with some weird intermediate states in the CFG. Unfortunately I've
been unable to find cases where this cleanup actually makes a significant
difference in the code. There is one test where we manage to remove an
empty block at the end of a function. Radar 6911268.
llvm-svn: 106939
CopyFromReg nodes for aliasing registers (AX and AL). This confuses the fast
register allocator.
Instead of CopyFromReg(AL), use ExtractSubReg(CopyFromReg(AX), sub_8bit).
This fixes PR7312.
llvm-svn: 106934
introduced in r106343, but only showed up recently (with a particular compiler &
linker combination) because of the particular check, and because we have no
builtin checking for dereferencing the end of an array, which is truly
unfortunate.
llvm-svn: 106908
The VNInfo.kills vector was almost unused except for all the code keeping it
updated. The few places using it were easily rewritten to check for interval
ends instead.
The two new methods LiveInterval::killedAt and killedInRange are replacements.
This brings us down to 3 independent data structures tracking kills.
llvm-svn: 106905
SCEVUnknown values which are loop-variant, as LSR can't do anything
interesting with these values in any case. This fixes very slow compile
times on loops which have large numbers of such values.
llvm-svn: 106897
for an "i" constraint should get lowered; PR 6309. While
this argument was passed around a lot, this is the only
place it was used, so it goes away from a lot of other
places.
llvm-svn: 106893
are dead, not just the def of this register. I.e., a register could be dead, but
it's subreg isn't.
Testcase to follow with a subsequent patch.
llvm-svn: 106878
with the following instructions. This is done via trickery by considering the
instruction preceding the IT to be the hazard. Care must be taken to ensure
it's the first non-debug instruction, or the presence of debug info will
affect codegen.
Part of the continuing work for rdar://7797940, making ARM code-gen unaffected
by the presence of debug information.
llvm-svn: 106871
buffer in the same chunk of memory.
2 less mallocs for every uninitialized MemoryBuffer and 1 less malloc for every
MemoryBuffer pointing to a memory range translate into 20% less mallocs on
clang -cc1 -Eonly Cocoa_h.m.
llvm-svn: 106839
and CallInst for getting hold
of the intrinsic's arguments
simplify along the way (at least for me this is much more legible now)
Bill, Baldrick or Anton, please review\!
llvm-svn: 106838
This fixes PR7479 and PR7485. The test cases from those PRs are big, so not
included. However, PR7485 comes from self hosting on FreeBSD, so we will surely
hear about any regression.
llvm-svn: 106811
address requires a register or secondary load to compute
(most PIC modes). This improves "g" constraint handling. 8015842.
The test from 2007 is attempting to test the fix for PR1761,
but since -relocation-model=static doesn't work on Darwin
x86-64, it was not testing what it was supposed to be testing
and was passing erroneously. Fixed to use Linux x86-64.
llvm-svn: 106779
which don't have a catch-all associated with them not just clean-ups. This fixes
the SingleSource/Benchmarks/Shootout-C++/except.cpp testcase that broke because
of my change r105902.
llvm-svn: 106772
CoalescerPair can determine if a copy can be coalesced, and which register gets
merged away. The old logic in SimpleRegisterCoalescing had evolved into
something a bit too convoluted.
This second attempt fixes some crashes that only occurred Linux.
llvm-svn: 106769
[L]oad, [u]se, [d]ef, or [S]tore slots.
This makes it easier to see if two indices refer to the same instruction,
avoiding mental mod 4 calculations.
llvm-svn: 106766
In this case it is essential that the kill is real because the spiller will
decide to omit a spill if it thinks there is a later kill.
llvm-svn: 106751
when the condition is constant. This optimization shouldn't be
necessary, because codegen shouldn't be able to find dead control
paths that the IR-level optimizer can't find. And it's undesirable,
because it encourages bugpoint to leave "br i1 false" branches
in its output. And it wasn't updating the CFG.
I updated all the tests I could, but some tests are too reduced
and I wasn't able to meaningfully preserve them.
llvm-svn: 106748