This is intended as a clean up after the big clang-format commit
(r280751), which unfortunately resulted in many of the comment
paragraphs in LLDB being very hard to read.
FYI, the script I used was:
import textwrap
import commands
import os
import sys
import re
tmp = "%s.tmp"%sys.argv[1]
out = open(tmp, "w+")
with open(sys.argv[1], "r") as f:
header = ""
text = ""
comment = re.compile(r'^( *//) ([^ ].*)$')
special = re.compile(r'^((([A-Z]+[: ])|([0-9]+ )).*)|(.*;)$')
for line in f:
match = comment.match(line)
if match and not special.match(match.group(2)):
# skip intentionally short comments.
if not text and len(match.group(2)) < 40:
out.write(line)
continue
if text:
text += " " + match.group(2)
else:
header = match.group(1)
text = match.group(2)
continue
if text:
filled = textwrap.wrap(text, width=(78-len(header)),
break_long_words=False)
for l in filled:
out.write(header+" "+l+'\n')
text = ""
out.write(line)
os.rename(tmp, sys.argv[1])
Differential Revision: https://reviews.llvm.org/D46144
llvm-svn: 331197
All references to Host and Core have been removed, so this
class can now safely be lowered into Utility.
Differential Revision: https://reviews.llvm.org/D30559
llvm-svn: 296909
This moves the following classes from Core -> Utility.
ConstString
Error
RegularExpression
Stream
StreamString
The goal here is to get lldbUtility into a state where it has
no dependendencies except on itself and LLVM, so it can be the
starting point at which to start untangling LLDB's dependencies.
These are all low level and very widely used classes, and
previously lldbUtility had dependencies up to lldbCore in order
to use these classes. So moving then down to lldbUtility makes
sense from both the short term and long term perspective in
solving this problem.
Differential Revision: https://reviews.llvm.org/D29427
llvm-svn: 293941
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
value. This fixes problems, for instance, with the StepRange plans, where they know that
they explained the stop because they were at their "run to here" breakpoint, then deleted
that breakpoint, so when they got asked again, doh! I had done this for a couple of plans
in an ad hoc fashion, this just formalizes it.
Also add a "ResumeRequested" in Process so that the code in the completion handlers can
tell the ShouldStop logic they want to resume rather than just directly resuming. That allows
us to handle resuming in a more controlled fashion.
Also, SetPublicState can take a "restarted" flag, so that it doesn't drop the run lock when
the target was immediately restarted.
--This line, and those below , will be ignored--
M test/lang/objc/objc-dynamic-value/TestObjCDynamicValue.py
M include/lldb/Target/ThreadList.h
M include/lldb/Target/ThreadPlanStepOut.h
M include/lldb/Target/Thread.h
M include/lldb/Target/ThreadPlanBase.h
M include/lldb/Target/ThreadPlanStepThrough.h
M include/lldb/Target/ThreadPlanStepInstruction.h
M include/lldb/Target/ThreadPlanStepInRange.h
M include/lldb/Target/ThreadPlanStepOverBreakpoint.h
M include/lldb/Target/ThreadPlanStepUntil.h
M include/lldb/Target/StopInfo.h
M include/lldb/Target/Process.h
M include/lldb/Target/ThreadPlanRunToAddress.h
M include/lldb/Target/ThreadPlan.h
M include/lldb/Target/ThreadPlanCallFunction.h
M include/lldb/Target/ThreadPlanStepOverRange.h
M source/Plugins/LanguageRuntime/ObjC/AppleObjCRuntime/AppleThreadPlanStepThroughObjCTrampoline.h
M source/Plugins/LanguageRuntime/ObjC/AppleObjCRuntime/AppleThreadPlanStepThroughObjCTrampoline.cpp
M source/Target/StopInfo.cpp
M source/Target/Process.cpp
M source/Target/ThreadPlanRunToAddress.cpp
M source/Target/ThreadPlan.cpp
M source/Target/ThreadPlanCallFunction.cpp
M source/Target/ThreadPlanStepOverRange.cpp
M source/Target/ThreadList.cpp
M source/Target/ThreadPlanStepOut.cpp
M source/Target/Thread.cpp
M source/Target/ThreadPlanBase.cpp
M source/Target/ThreadPlanStepThrough.cpp
M source/Target/ThreadPlanStepInstruction.cpp
M source/Target/ThreadPlanStepInRange.cpp
M source/Target/ThreadPlanStepOverBreakpoint.cpp
M source/Target/ThreadPlanStepUntil.cpp
M lldb.xcodeproj/xcshareddata/xcschemes/Run Testsuite.xcscheme
llvm-svn: 181381
LLDB is crashing when logging is enabled from lldb-perf-clang. This has to do with the global destructor chain as the process and its threads are being torn down.
All logging channels now make one and only one instance that is kept in a global pointer which is never freed. This guarantees that logging can correctly continue as the process tears itself down.
llvm-svn: 178191
hitting auto-continue signals while running a thread plan would cause us to lose control of the debug
session.
<rdar://problem/12993641>
llvm-svn: 174793
process IDs, and thread IDs, but was mainly needed for for the UserID's for
Types so that DWARF with debug map can work flawlessly. With DWARF in .o files
the type ID was the DIE offset in the DWARF for the .o file which is not
unique across all .o files, so now the SymbolFileDWARFDebugMap class will
make the .o file index part (the high 32 bits) of the unique type identifier
so it can uniquely identify the types.
llvm-svn: 142534
This will allow debugger plug-ins to make any instance of "lldb_private::StopInfo"
that can completely describe any stop reason. It also provides a framework for
doing intelligent things with the stop info at important times in the lifetime
of the inferior.
Examples include the signal stop info in StopInfoUnixSignal. It will check with
the process to see that the current action is for the signal. These actions
include wether to stop for the signal, wether the notify that the signal was
hit, and wether to pass the signal along to the inferior process. The
StopInfoUnixSignal class overrides the "ShouldStop()" method of StopInfo and
this allows the stop info to determine if it should stop at the signal or
continue the process.
StopInfo subclasses must override the following functions:
virtual lldb::StopReason
GetStopReason () const = 0;
virtual const char *
GetDescription () = 0;
StopInfo subclasses can override the following functions:
// If the subclass returns "false", the inferior will resume. The default
// version of this function returns "true" which means the default stop
// info will stop the process. The breakpoint subclass will check if
// the breakpoint wants us to stop by calling any installed callback on
// the breakpoint, and also checking if the breakpoint is for the current
// thread. Signals will check if they should stop based off of the
// UnixSignal settings in the process.
virtual bool
ShouldStop (Event *event_ptr);
// Sublasses can state if they want to notify the debugger when "ShouldStop"
// returns false. This would be handy for breakpoints where you want to
// log information and continue and is also used by the signal stop info
// to notify that a signal was received (after it checks with the process
// signal settings).
virtual bool
ShouldNotify (Event *event_ptr)
{
return false;
}
// Allow subclasses to do something intelligent right before we resume.
// The signal class will figure out if the signal should be propagated
// to the inferior process and pass that along to the debugger plug-ins.
virtual void
WillResume (lldb::StateType resume_state)
{
// By default, don't do anything
}
The support the Mach exceptions was moved into the lldb/source/Plugins/Process/Utility
folder and now doesn't polute the lldb_private::Thread class with platform
specific code.
llvm-svn: 110184
without having to use RTTI.
Removed the ThreadPlanContinue and replaced with a ShouldAutoContinue query that serves the same purpose. Having to push
another plan to assert that if there's no other indication the target should continue when this plan is popped was flakey
and error prone. This method is more stable, and fixed problems we were having with thread specific breakpoints.
llvm-svn: 106378