When plugins are used the Multiplex(AST)Consumer is employed to dispatch
to both the plugin ASTConsumers and the IRGen ASTConsumer. It wasn't
dispatching a critical call for debug info, resulting in plugin users
having a negative debugging experience.
While I'm here, forward a bunch of other missing calls through the
consumer that seem like they should be there.
To test this, use the example plugin (requires plugins and examples) and
split the test case up so that the plugin testing can be done under that
requirement while the non-plugin testing will execute even in builds
that don't include plugin support or examples.
llvm-svn: 213213
By having the two variables 'a' and 'b' in this test in a namespace, the
type was required to be complete before any debug info was ever emitted
(the entire namespace is parsed before the variables were emitted), this
meant that the codepath in which a declaration is emitted, then later on
the type is required to be complete and the debug info must be upgraded
to a definition was not used.
Moving the variables outside a namespace fixes this test coverage bug.
(interestingly, code coverage didn't help here -
HandleTagDeclRequireDefinition is fully covered because it's called even
in cases where the type hasn't been emitted for debug info at all
(further down in CGDebugInfo this no-ops) - so CC wouldn't've helped
catch this test coverage problem)
llvm-svn: 213211
While we previously supported __uuidof applied to a template
specialization, we would only find the uuid attribute if it was applied
to the template argument. We would erroneously ignore the uuid
attribute on the specialization itself.
This is required to parse Windows Runtime C++ Template Library headers.
llvm-svn: 213016
Previously, we would have a private backing variable and an internal
alias pointing at it.
However, -fdata-sections only fires if a global variable has non-private
linkage. This means that an unreferenced vftable wouldn't get
discarded, bloating the object file.
Instead, stick the backing variable in a comdat even if the alias has
internal linkage. This will allow the linker to drop the vftable if it
is unused.
llvm-svn: 212901
OS X TLS has all accesses going through the thread-wrapper function and
gives the backing thread-local variable internal linkage. This means
that thread-wrappers must have WeakAnyLinkage so that references to the
internal thread-local variables do not get propagated to other code.
It also means that translation units which do not provide a definition
for the thread-local variable cannot attempt to emit a thread-wrapper
because the thread wrapper will attempt to reference the backing
variable.
Differential Revision: http://reviews.llvm.org/D4109
llvm-svn: 212841
This patch flips the default value for -gcolumn-info to be on by
default. I discussed the rationale and provided compile/size data
in:
http://lists.cs.uiuc.edu/pipermail/llvmdev/2014-June/074290.html
This also updates the documentation and some tests that relied on
the lack of column information. Some tests had column information
in the expected output, but it was wrong (the tsan tests). Others
were using the driver to execute.
llvm-svn: 212781
Originally committed in r211722, this fixed one case of dtor calls being
emitted without locations (this causes problems for debug info if the
call is then inlined), this caught only some of the cases.
Instead of trying to re-enable the location before the cleanup, simply
re-enable the location immediately after the unconditional branches in
question using a scoped device to ensure the no-location state doesn't
leak out arbitrarily.
llvm-svn: 212761
Comdat IR references were mistakenly printed for aliases when they
passed through the IR/AsmWriter code.
This makes clang's tests not check for the existance of these wrongly
printed comdat references.
llvm-svn: 212733
The sret paramater consumes the register after the implicit 'this'
parameter, as with other calling conventions.
Fixes PR20278, which turned out to be very easy.
llvm-svn: 212669
Of course, such code is horribly broken and will explode on impact.
That said, ATL does it, and we have to support them, at least a little
bit.
Fixes PR20191.
llvm-svn: 212508
The MS ABI RTTI emission code would choose names for IR types like
%"MSRTTITypeDescriptor\02". This name is undesirable because it
requires escaping; the underlying reason for this is that the name is
unprintable. Fix this by naming it %rtti.TypeDescriptor2.
While here, stop trying to do lookups in the LLVM Module's type table.
Instead, store the IR types in MicrosoftCXXABI. Lookups by name aren't
particularly fast.
llvm-svn: 212439
The Itanium rules are not appropriate for the MS ABI. RTTI data is
_never_ imported and thus is never available_externally. It is either
internal (if the type's linkage is internal) or linkonce_odr.
This also means that classes which inherit from dllimport'd bases force
their translation unit to duplicate the entirety of the RTTI data of
that base.
Interestingly, the complete object locator can never be referenced by
translation units which import the class.
This fixes PR20106.
llvm-svn: 212256
There are slight differences between /GR- and -fno-rtti which made
mapping one to the other inappropriate.
-fno-rtti disables dynamic_cast, typeid, and does not emit RTTI related
information for the v-table.
/GR- does not generate complete object locators and thus will not
reference them in vftables. However, constructs like dynamic_cast and
typeid are permitted.
This should bring our implementation of RTTI up to semantic parity with
MSVC modulo bugs.
llvm-svn: 212138
The pointer for a class's RTTI data comes right before the VFTable but
has no name. To be properly compatible with this, we do the following:
* Create a single GlobalVariable which holds the contents of the VFTable
_and_ the pointer to the RTTI data.
* Create a GlobalAlias, with appropriate linkage/visibility, that points
just after the RTTI data pointer. This ensures that the VFTable
symbol will always refer to VFTable data.
* Create a Comdat with a "Largest" SelectionKind and stick the private
GlobalVariable in it. By transitivity, the GlobalAlias will be a
member of the Comdat group. Using "Largest" ensures that foreign
definitions without an RTTI data pointer will _not_ be chosen in the
final linked image.
Whether or not we emit RTTI data depends on several things:
* The -fno-rtti flag implies that we should never not emit a pointer to
RTTI data before the VFTable.
* __declspec(dllimport) brings in the VFTable from a remote DLL. Use an
available_externally GlobalVariable to provide a local definition of
the VFTable. This means that we won't have any available_externally
definitions of things like complete object locators. This is
acceptable because they are never directly referenced.
To my knowledge, this completes the implementation of MSVC RTTI code
generation.
Further semantic work should be done to properly support /GR-.
llvm-svn: 212125
These don't actually require any registered backend to run.
This commit tests the water with a handful of fixes for what is a more
widespread problem.
llvm-svn: 212008
Windows on ARM defines va_list as a typedef for char *. Although the semantics
of argument passing for variadic functions matches AAPCS VFP, the wrapped
struct __va_list type is unused. This makes the intrinsic definition for
va_list match that of Visual Studio.
llvm-svn: 212004
Some time ago, I noticed that try would get resolved incorrectly for Windows
Itanium targets. Add an explicit test to exsure that exceptions are handled
correctly for Windows Itanium environments.
llvm-svn: 211992
This is a follow-up to David's r211677. For the following code,
we would end up referring to 'foo' in the initializer for 'arr',
and then fail to link, because 'foo' is dllimport and needs to be
accessed through the __imp_?foo.
__declspec(dllimport) extern const char foo[];
const char* f() {
static const char* const arr[] = { foo };
return arr[0];
}
Differential Revision: http://reviews.llvm.org/D4299
llvm-svn: 211736
Consider the following code:
template <typename T> class Base {};
class __declspec(dllexport) class Derived : public Base<int> {}
When the base of an exported or imported class is a class template
specialization, MSVC will propagate the dll attribute to the base.
In the example code, Base<int> becomes a dllexported class.
This commit makes Clang do the proopagation when the base hasn't been
instantiated yet, and warns about it being unsupported otherwise.
This is different from MSVC, which allows changing a specialization
back and forth between dllimport and dllexport and seems to let the
last one win. Changing the dll attribute after instantiation would be
hard for us, and doesn't seem to come up in practice, so I think this
is a reasonable limitation to have.
MinGW doesn't do this kind of propagation.
Differential Revision: http://reviews.llvm.org/D4264
llvm-svn: 211725
With && at the top level of an expression, the last thing done when
emitting the expression was an unconditional jump to the cleanup block.
To reduce the amount of stepping, the DebugLoc is omitted from the
unconditional jump. This is done by clearing the IRBuilder's
"CurrentDebugLocation"*. If this is not set to some non-empty value
before the cleanup block is emitted, the cleanups don't get a location
either. If a call without a location is emitted in a function with debug
info, and that call is then inlined - bad things happen. (without a
location for the call site, the inliner would just leave the inlined
DebugLocs as they were - pointing to roots in the original function, not
inlined into the current function)
Follow up commit to LLVM will ensure that breaking the invariants of the
DebugLoc chains by having chains that don't lead to the current function
will fail assertions, so we shouldn't accidentally slip any of these
cases in anymore. Those assertions may reveal further cases that need to
be fixed in clang, though I've tried to test heavily to avoid that.
* See r128471, r128513 for the code that clears the
CurrentDebugLocation. Simply removing this code or moving the code
into IRBuilder to apply to all unconditional branches would regress
desired behavior, unfortunately.
llvm-svn: 211722
The address of dllimport functions can be accessed one of two ways:
- Through the IAT which is symbolically referred to with a symbol
starting with __imp_.
- Via the wrapper-function which ends up calling through the __imp_
symbol.
The problem with using the wrapper-function is that it's address will
not compare as equal in all translation units. Specifically, it will
compare unequally with the translation unit which defines the function.
This fixes PR19955.
llvm-svn: 211570
The address of dllimport variables isn't something that can be
meaningfully used in a constexpr context and isn't suitable for
evaluation at load-time. They require loads from memory to properly
evaluate.
This fixes PR19955.
Differential Revision: http://reviews.llvm.org/D4250
llvm-svn: 211568
This reverts commit r211467 which reverted r211408,r211410, it caused
crashes in test/SemaCXX/undefined-internal.cpp for i686-win32 targets.
llvm-svn: 211473
These tests relied on information that was only available for clang
builds that included asserts. Fix these tests to lift that restriction.
llvm-svn: 211408
This refactors the emission of dynamic_cast and typeid expressions so
that ABI specific knowledge lives in appropriate places. There are
quite a few benefits for having the two implementations share a common
core like sharing logic for optimization opportunities.
While we are at it, clean up the tests.
llvm-svn: 211402
In the final phase of the merge, I managed to disable a bunch of Clang
tests accidentally. Fortunately none of them seem to have broken in
the interim.
llvm-svn: 211149
When instantiating dllimport variables with dynamic initializers, don't
bail out of Sema::InstantiateVariableInitializer without calling
PopExpressionEvaluationContext().
This was causing a stale object to stay on the ExprEvalContexts stack,
causing subsequent calls to getCurrentMangleNumberContext() to fail,
resulting in incorrect numbering of static locals (and probably other
broken things).
llvm-svn: 211137
We may not have the mangling for static locals vs. enums completely figured out,
but at least for my simple test cases, enums should not increment the mangling
number.
Differential Revision: http://reviews.llvm.org/D4164
llvm-svn: 211078
Summary:
The RTTI scheme for x86_64 is largely the same as the one for i386.
Differences are largely limited to avoiding load-time relocations by
replacing pointers to RTTI metadata with the difference of that data
relative to the load address of the module.
Interestingly, this precludes the possibility of successfully using RTTI
data from another DLL. The ImageBase reference is always relative to
the current DLL.
Differential Revision: http://reviews.llvm.org/D4148
llvm-svn: 211041