This reverts commit ed29dbaafa.
I'm backing out D68945, which as the discussion for D73526 shows, doesn't
seem to handle the -O0 path through the codegen backend correctly. I'll
reland the patch when a fix is worked out, apologies for all the churn.
The two parent commits are part of this revert too.
Conflicts:
llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
llvm/test/DebugInfo/X86/dbg-addr-dse.ll
SelectionDAGBuilder conflict is due to a nearby change in e39e2b4a79
that's technically unrelated. dbg-addr-dse.ll conflicted because
41206b61e3 (legitimately) changes the order of two lines.
There are further modifications to dbg-value-func-arg.ll: it landed after
the patch being reverted, and I've converted indirection to be represented
by the isIndirect field rather than DW_OP_deref.
The legalizer produces a lot of these, and they make reading legalized
MIR annoying. For some reason, this does seem to sometimes introduce
copies of implicit def, which is dumb.
contractCrossBankCopyIntoStore() finds the instruction defines the
source register and uses its output to replace the register. There are,
however, instructions that have multiple outputs, e.g. G_UNMERGE_VALUES.
Current implementation hardcodes to operand 0 and has no way of knowing
which output should be used.
This change adds another function to directly return the register that
is the source of the register and use that for folding.
This fixes https://bugs.llvm.org/show_bug.cgi?id=44783
Differential Revision: https://reviews.llvm.org/D74005
Start using a new strategy with a combination of merge and unmerges.
This allows scalarizing before lowering, which in cases like
<2 x s128> avoids producing giant illegal shifts.
Summary:
Applying this cleanup:
- MIRBuilder.buildInstr(TargetOpcode::G_ASHR)
- .addDef(Shifted)
- .addUse(Res)
- .addUse(ShiftAmt);
+ MIRBuilder.buildAShr(Shifted, Res, ShiftAmt);
caused an assertion failure here:
llc: /home/jayfoad2/git/llvm-project/llvm/lib/CodeGen/MachineRegisterInfo.cpp:404: llvm::MachineInstr *llvm::MachineRegisterInfo::getVRegDef(unsigned int) const: Assertion `(I.atEnd() || std::next(I) == def_instr_end()) && "getVRegDef assumes a single definition or no definition"' failed.
#4 0x00000000050a6d96 in llvm::MachineRegisterInfo::getVRegDef (this=0x74606a0, Reg=2147483650) at /home/jayfoad2/git/llvm-project/llvm/lib/CodeGen/MachineRegisterInfo.cpp:403
#5 0x00000000066148f6 in llvm::getConstantVRegValWithLookThrough (VReg=2147483650, MRI=..., LookThroughInstrs=false, HandleFConstant=true) at /home/jayfoad2/git/llvm-project/llvm/lib/CodeGen/GlobalISel/Utils.cpp:244
#6 0x00000000066147da in llvm::getConstantVRegVal (VReg=2147483650, MRI=...) at /home/jayfoad2/git/llvm-project/llvm/lib/CodeGen/GlobalISel/Utils.cpp:210
#7 0x0000000006615367 in llvm::ConstantFoldBinOp (Opcode=101, Op1=2147483650, Op2=2147483656, MRI=...) at /home/jayfoad2/git/llvm-project/llvm/lib/CodeGen/GlobalISel/Utils.cpp:341
#8 0x000000000657eee0 in llvm::CSEMIRBuilder::buildInstr (this=0x7465010, Opc=101, DstOps=..., SrcOps=..., Flag=...) at /home/jayfoad2/git/llvm-project/llvm/lib/CodeGen/GlobalISel/CSEMIRBuilder.cpp:160
#9 0x0000000003645958 in llvm::MachineIRBuilder::buildAShr (this=0x7465010, Dst=..., Src0=..., Src1=..., Flags=...) at /home/jayfoad2/git/llvm-project/llvm/include/llvm/CodeGen/GlobalISel/MachineIRBuilder.h:1298
#10 0x00000000065c35b1 in llvm::LegalizerHelper::lower (this=0x7fffffffb5f8, MI=..., TypeIdx=0, Ty=...) at /home/jayfoad2/git/llvm-project/llvm/lib/CodeGen/GlobalISel/LegalizerHelper.cpp:2020
because at this point there are two instructions defining Res: the
original G_SMULO/G_UMULO and the new G_MUL that we built. The fix is
to modify the original mul in place, so that there is only ever one
definition of Res.
Reviewers: arsenm, aditya_nandakumar
Subscribers: wdng, rovka, hiraditya, volkan, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72842
Summary: This is a first step before changing the types to llvm::Align and introduce functions to ease client code.
Reviewers: courbet
Subscribers: arsenm, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, atanasyan, jsji, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73785
One of the exit criteria of computeKnownBits is whether we reach the max
recursive call depth. Before this patch we would check that the
depth is exactly equal to max depth to exit.
Depth may get bigger than max depth if it gets passed to a different
GISelKnownBits object.
This may happen when say a generic part uses a GISelKnownBits object
with some max depth, but then we hit TL.computeKnownBitsForTargetInstr
which creates a new GISelKnownBits object with a different and smaller
depth. In that situation, when we hit the max depth check for the first
time in the target specific GISelKnownBits object, depth may already
be bigger than the current max depth. Hence we would continue to compute
the known bits, until we ran through the full depth of the chain of
computation or ran out of stack space.
For instance, let say we have
GISelKnownBits Info(/*MaxDepth*/ = 10);
Info.getKnownBits(Foo)
// 9 recursive calls to computeKnownBitsImpl.
// Then we hit a target specific instruction.
// The target specific GISelKnownBits does this:
GISelKnownBits TargetSpecificInfo(/*MaxDepth*/ = 6)
TargetSpecificInfo.computeKnownBitsImpl() // <-- next max depth checks would
// always return false.
This commit does not have any test case, none of the in-tree targets
use computeKnownBitsForTargetInstr.
We can have geps that have a scalar base pointer, and a vector index value, which
means that the base pointer must be splatted into a vector of pointers.
This fixes crashes on arm64 GlobalISel with optimizations enabled.
Commit 9965b12fd1 was supposed to change the offset constant when
lowering load/stores, but only introduced this change for loads. This
patch adds the same fix for stores.
This is passed to legalizeCustom, but not intrinsic. Also remove the
MRI argument, since you can get that from the MachineIRBuilder.
I'm not sure why MachineIRBuilder has a private observer member, and
this is passed separately.
For pow2 constants we should use G_SHL for pattern matching (and perf)
purposes later.
Vector support not yet implemented.
Differential Revision: https://reviews.llvm.org/D73659
Summary:
This is mostly NFC. computeForAddSub may give more precise results in
some cases, but that doesn't seem to affect any existing GlobalISel
tests.
Subscribers: rovka, hiraditya, volkan, Petar.Avramovic, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73431
G_CTPOP is generated from llvm.ctpop.<type> intrinsics, clang generates
these intrinsics from __builtin_popcount and __builtin_popcountll.
Add lower and narrow scalar for G_CTPOP.
Lower G_CTPOP for MIPS32.
Differential Revision: https://reviews.llvm.org/D73216
llvm.cttz.<type> intrinsic has additional i1 argument is_zero_undef,
it tells whether zero as the first argument produces a defined result.
G_CTTZ is generated from llvm.cttz.<type> (<type> <src>, i1 false)
intrinsics, clang generates these intrinsics from __builtin_ctz and
__builtin_ctzll.
G_CTTZ_ZERO_UNDEF comes from llvm.cttz.<type> (<type> <src>, i1 true).
Clang generates such intrinsics as parts of expansion of builtin_ffs
and builtin_ffsll. It is also traditionally part of and many
algorithms that are now predicated on avoiding zero-value inputs.
Add narrow scalar (algorithm uses G_CTTZ_ZERO_UNDEF) for G_CTTZ.
Lower G_CTTZ and G_CTTZ_ZERO_UNDEF for MIPS32.
Differential Revision: https://reviews.llvm.org/D73215
llvm.ctlz.<type> intrinsic has additional i1 argument is_zero_undef,
it tells whether zero as the first argument produces a defined result.
MIPS clz instruction returns 32 for zero input.
G_CTLZ is generated from llvm.ctlz.<type> (<type> <src>, i1 false)
intrinsics, clang generates these intrinsics from __builtin_clz and
__builtin_clzll.
G_CTLZ_ZERO_UNDEF can also be generated from llvm.ctlz with true as
second argument. It is also traditionally part of and many algorithms
that are now predicated on avoiding zero-value inputs.
Add narrow scalar for G_CTLZ (algorithm uses G_CTLZ_ZERO_UNDEF).
Lower G_CTLZ_ZERO_UNDEF and select G_CTLZ for MIPS32.
Differential Revision: https://reviews.llvm.org/D73214
Teach the GISelKnowBits analysis how to deal with PHI operations.
PHIs are essentially COPYs happening on edges, so we can just reuse
the code for COPY.
This is NFC COPY-wise has we leave Depth untouched when calling
computeKnownBitsImpl for COPYs, like it was before this patch.
Increasing Depth is however required for PHIs as they may loop back to
themselves and we would end up in an infinite loop if we were not
increasing Depth.
Differential Revision: https://reviews.llvm.org/D73317
Summary:
This is a follow up on https://reviews.llvm.org/D71473#inline-647262.
There's a caveat here that `Align(1)` relies on the compiler understanding of `Log2_64` implementation to produce good code. One could use `Align()` as a replacement but I believe it is less clear that the alignment is one in that case.
Reviewers: xbolva00, courbet, bollu
Subscribers: arsenm, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, atanasyan, jsji, Jim, kerbowa, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73099
This was assuming the narrow target was the source type. Respect the
requested type when these don't match by using intermediate
merges. This avoids producing very wide, illegal shift expansions.
This was dropping the invariant metadata on dead argument loads, so
they weren't deleted.
Atomics still need to be fixed the same way. Also, apparently store
was never preserving dereferencable which should also be fixed.
This now develops the same problem G_ZEXT/G_ANYEXT have where the
requested type is assumed to be the source type. This will be fixed
separately by creating intermediate merges.
Bitcast only really applies between scalars and vectors. Implement as
an unmerge and remerge. The test needs to tolerate failure since one
of the unmerges currently fails to legalize.
We're planning to remove the shufflemask operand from ShuffleVectorInst
(D72467); fix GlobalISel so it doesn't depend on that Constant.
The change to prelegalizercombiner-shuffle-vector.mir happens because
the input contains a literal "-1" in the mask (so the parser/verifier
weren't really handling it properly). We now treat it as equivalent to
"undef" in all contexts.
Differential Revision: https://reviews.llvm.org/D72663
As an intermediate step, some TLI functions can be converted to using
LLT instead of MVT. Move this somewhere out of GlobalISel so DAG
functions can use these.