Add the scratch wave offset to the scratch buffer descriptor (SRSrc) in
the entry function prologue. This allows us to removes the scratch wave
offset register from the calling convention ABI.
As part of this change, allow the use of an inline constant zero for the
SOffset of MUBUF instructions accessing the stack in entry functions
when a frame pointer is not requested/required. Entry functions with
calls still need to set up the calling convention ABI stack pointer
register, and reference it in order to address arguments of called
functions. The ABI stack pointer register remains unswizzled, but is now
wave-relative instead of queue-relative.
Non-entry functions also use an inline constant zero SOffset for
wave-relative scratch access, but continue to use the stack and frame
pointers as before. When the stack or frame pointer is converted to a
swizzled offset it is now scaled directly, as the scratch wave offset no
longer needs to be subtracted first.
Update llvm/docs/AMDGPUUsage.rst to reflect these changes to the calling
convention.
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75138
Every called function could possibly need this to calculate the
absolute address of stack objectst, and this avoids inserting a copy
around every call site in the kernel. It's also somewhat cleaner to
keep this in a callee saved SGPR.
llvm-svn: 363990
This forced the caller to be aware of this, which is an ugly ABI
feature.
Partially reverts r295877. The original reasons for doing this are
mostly fixed. Alloca is now in a non-0 address space, so it should be
OK to have 0 as a valid pointer. Since we treat the absolute address
as the pointer value, this part only really needed to apply to
kernels.
Since r357093, we avoid the need to increment/decrement the offset
register in more cases, and since r354816 the scavenger can fail
without spilling, so it's less critical that we try to avoid an offset
that fits in the MUBUF offset.
Restrict to callable functions for now to split this into 2 steps to
limit thte number of test updates and in case anything breaks.
llvm-svn: 362665
Since the beginning, the offset of a frame index has been consistently
interpreted backwards. It was treating it as an offset from the
scratch wave offset register as a frame register. The correct
interpretation is the offset from the SP on entry to the function,
before the prolog. Frame index elimination then should select either
SP or another register as an FP.
Treat the scratch wave offset on kernel entry as the pre-incremented
SP. Rely more heavily on the standard hasFP and frame pointer
elimination logic, and clean up the private reservation code. This
saves a copy in most callee functions.
The kernel prolog emission code is still kind of a mess relying on
checking the uses of physical registers, which I would prefer to
eliminate.
Currently selection directly emits MUBUF instructions, which require
using a reference to some register. Use the register chosen for SP,
and then ignore this later. This should probably be cleaned up to use
pseudos that don't refer to any specific base register until frame
index elimination.
Add a workaround for shaders using large numbers of SGPRs. I'm not
sure these cases were ever working correctly, since as far as I can
tell the logic for figuring out which SGPR is the scratch wave offset
doesn't match up with the shader input initialization in the shader
programming guide.
llvm-svn: 362661
The test should really be checking for the property directly in the
code object headers, but there are problems with this. I don't see
this directly represented in the text form, and for the binary
emission this is depending on a function level subtarget feature to
emit a global flag.
llvm-svn: 357558
When matching half of the build_vector to a load, there could still be
a hidden dependency on the other half of the build_vector the pattern
wouldn't detect. If there was an additional chain dependency on the
other value, a cycle could be introduced.
I don't think a tablegen pattern is capable of matching the necessary
conditions, so move this into PreprocessISelDAG. Check isPredecessorOf
for the other value to avoid a cycle. This has a warning that it's
expensive, so this should probably be moved into an MI pass eventually
that will have more freedom to reorder instructions to help match
this. That is currently complicated by the lack of a computeKnownBits
type mechanism for the selected function.
llvm-svn: 355731
- Predicate D16 patterns on this new feature
- Added this new feature to gfx900/2/4
Differential Revision: https://reviews.llvm.org/D46366
llvm-svn: 331551
GFX9 stopped using m0 for most DS instructions. Select
a different instruction without the use. I think this will
be less error prone than trying to manually maintain m0
uses as needed.
llvm-svn: 319270
These check lines are supposed to make sure the new d16
load instructions aren't used, but the expected instruction
name is a prefix of the incorrect instruction name.
llvm-svn: 314714
Also starts selecting global loads for constant address
in some cases. Some end up selecting to mubuf still, which
requires investigation.
We still get sub-optimal regalloc and extra waitcnts inserted
due to not really tracking the liveness of the separate register
halves.
llvm-svn: 313716