Summary:
Use TSC emulation in cases where RDTSCP isn't available on the host
running an XRay instrumented binary. We can then fall back into
emulation instead of not even installing XRay's runtime functionality.
We only do this for now in the naive/basic logging implementation, but
should be useful in even FDR mode.
Should fix http://llvm.org/PR32148.
Reviewers: pelikan, rnk, sdardis
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30677
llvm-svn: 297800
Summary:
Use a common definition of a "this variable is unused" annotation for useless
variables only present for their lambda global initializers, to silence gcc's
warning.
Reviewers: dberris
Reviewed By: dberris
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29860
llvm-svn: 296449
Revert "Fix -Wsign-compare - this might not be quite right, but preserves behavior"
Revert "[XRay] Implement powerpc64le xray."
This reverts commit r294826.
This reverts commit r294781.
llvm-svn: 294842
Summary:
The implementation, however, is in different arch-specific files, unless it's emulated.
Reviewers: dberris, pelikan, javed.absar
Subscribers: aemerson, llvm-commits
Differential Revision: https://reviews.llvm.org/D29796
llvm-svn: 294777
Summary:
In llvm.org/PR31756 it's pointed out that sometimes rdtscp isn't
available. We fix it here by checking first whether it's availble before
installing the logging handler. In future commits we can have
alternative implementations, maybe working around some of the
constraints on some systems.
This change enables us to make that determination, but report an error
instead when the features aren't available.
Reviewers: sdardis, javed.absar, rSerge
Subscribers: pelikan, llvm-commits
Differential Revision: https://reviews.llvm.org/D29438
llvm-svn: 293870
Summary:
In this change we introduce the notion of a "flight data recorder" mode
for XRay logging, where XRay logs in-memory first, and write out data
on-demand as required (as opposed to the naive implementation that keeps
logging while tracing is "on"). This depends on D26232 where we
implement the core data structure for holding the buffers that threads
will be using to write out records of operation.
This implementation only currently works on x86_64 and depends heavily
on the TSC math to write out smaller records to the inmemory buffers.
Also, this implementation defines two different kinds of records with
different sizes (compared to the current naive implementation): a
MetadataRecord (16 bytes) and a FunctionRecord (8 bytes). MetadataRecord
entries are meant to write out information like the thread ID for which
the metadata record is defined for, whether the execution of a thread
moved to a different CPU, etc. while a FunctionRecord represents the
different kinds of function call entry/exit records we might encounter
in the course of a thread's execution along with a delta from the last
time the logging handler was called.
While this implementation is not exactly what is described in the
original XRay whitepaper, this one gives us an initial implementation
that we can iterate and build upon.
Reviewers: echristo, rSerge, majnemer
Subscribers: mehdi_amini, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D27038
llvm-svn: 293015
Summary:
If you decide to recompile parts of your Linux distro with XRay, it may
be useful to know which trace belongs to which binary. While there, get
rid of the incorrect strncat() usage; it always returns a pointer to the
start which makes that if() always true. Replace with snprintf which is
bounded so that enough from both strings fits nicely.
Reviewers: dberris
Subscribers: danalbert, srhines, kubabrecka, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D27912
llvm-svn: 290861
Summary:
In this change we introduce the notion of a "flight data recorder" mode
for XRay logging, where XRay logs in-memory first, and write out data
on-demand as required (as opposed to the naive implementation that keeps
logging while tracing is "on"). This depends on D26232 where we
implement the core data structure for holding the buffers that threads
will be using to write out records of operation.
This implementation only currently works on x86_64 and depends heavily
on the TSC math to write out smaller records to the inmemory buffers.
Also, this implementation defines two different kinds of records with
different sizes (compared to the current naive implementation): a
MetadataRecord (16 bytes) and a FunctionRecord (8 bytes). MetadataRecord
entries are meant to write out information like the thread ID for which
the metadata record is defined for, whether the execution of a thread
moved to a different CPU, etc. while a FunctionRecord represents the
different kinds of function call entry/exit records we might encounter
in the course of a thread's execution along with a delta from the last
time the logging handler was called.
While this implementation is not exactly what is described in the
original XRay whitepaper, this one gives us an initial implementation
that we can iterate and build upon.
Reviewers: echristo, rSerge, majnemer
Subscribers: mehdi_amini, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D27038
llvm-svn: 290852
This goes through all the calls to `Report(...)` to make sure that each
one would have a newline at the end of the message for readability.
llvm-svn: 287736
Summary:
Adds a CMake check for whether the compiler used to build the XRay
library supports XRay-instrumentation. If the compiler we're using does
support the `-fxray-instrument` flag (i.e. recently-built Clang), we
define the XRAY_NEVER_INSTRUMENT macro that then makes sure that the
XRay runtime functions never get XRay-instrumented.
This prevents potential weirdness involved with building the XRay
library with a Clang that supports XRay-instrumentation, and is
attempting to XRay-instrument the build of compiler-rt.
Reviewers: majnemer, rSerge, echristo
Subscribers: mehdi_amini, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D26597
llvm-svn: 287068
Depends on D21612 which implements the building blocks for the compiler-rt
implementation of the XRay runtime. We use a naive in-memory log of fixed-size
entries that get written out to a log file when the buffers are full, and when
the thread exits.
This implementation lays some foundations on to allowing for more complex XRay
records to be written to the log in subsequent changes. It also defines the format
that the function call accounting tool in D21987 will start building upon.
Once D21987 lands, we should be able to start defining more tests using that tool
once the function call accounting tool becomes part of the llvm distribution.
Reviewers: echristo, kcc, rnk, eugenis, majnemer, rSerge
Subscribers: sdardis, rSerge, dberris, tberghammer, danalbert, srhines, majnemer, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D21982
llvm-svn: 279805