and avoid cloning unused decls into every partition.
Module partitioning showed up as a source of significant overhead when I
profiled some trivial test cases. Avoiding the overhead of partitionging
for uncalled functions helps to mitigate this.
This change also means that it is no longer necessary to have a
LazyEmittingLayer underneath the CompileOnDemand layer, since the
CompileOnDemandLayer will not extract or emit function bodies until they are
called.
llvm-svn: 236465
signature match the other layers.
This makes it possible to compose other layers (e.g. IRTransformLayer) on top
of CompileOnDemandLayer.
llvm-svn: 235029
The patch is generated using clang-tidy misc-use-override check.
This command was used:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py \
-checks='-*,misc-use-override' -header-filter='llvm|clang' \
-j=32 -fix -format
http://reviews.llvm.org/D8925
llvm-svn: 234679
use these to add support for C++ static ctors/dtors to the Orc-lazy JIT in LLI.
Replace the trivial_retval_1 regression test - the new 'hello' test is covering
strictly more code.
llvm-svn: 233885
MCJIT.
This patch decouples the two responsibilities of the RTDyldMemoryManager class,
memory management and symbol resolution, into two new classes:
RuntimeDyld::MemoryManager and RuntimeDyld::SymbolResolver.
The symbol resolution interface is modified slightly, from:
uint64_t getSymbolAddress(const std::string &Name);
to:
RuntimeDyld::SymbolInfo findSymbol(const std::string &Name);
The latter passes symbol flags along with symbol addresses, allowing RuntimeDyld
and others to reason about non-strong/non-exported symbols.
The memory management interface removes the following method:
void notifyObjectLoaded(ExecutionEngine *EE,
const object::ObjectFile &) {}
as it is not related to memory management. (Note: Backwards compatibility *is*
maintained for this method in MCJIT and OrcMCJITReplacement, see below).
The RTDyldMemoryManager class remains in-tree for backwards compatibility.
It inherits directly from RuntimeDyld::SymbolResolver, and indirectly from
RuntimeDyld::MemoryManager via the new MCJITMemoryManager class, which
just subclasses RuntimeDyld::MemoryManager and reintroduces the
notifyObjectLoaded method for backwards compatibility).
The EngineBuilder class retains the existing method:
EngineBuilder&
setMCJITMemoryManager(std::unique_ptr<RTDyldMemoryManager> mcjmm);
and includes two new methods:
EngineBuilder&
setMemoryManager(std::unique_ptr<MCJITMemoryManager> MM);
EngineBuilder&
setSymbolResolver(std::unique_ptr<RuntimeDyld::SymbolResolver> SR);
Clients should use EITHER:
A single call to setMCJITMemoryManager with an RTDyldMemoryManager.
OR (exclusive)
One call each to each of setMemoryManager and setSymbolResolver.
This patch should be fully compatible with existing uses of RTDyldMemoryManager.
If it is not it should be considered a bug, and the patch either fixed or
reverted.
If clients find the new API to be an improvement the goal will be to deprecate
and eventually remove the RTDyldMemoryManager class in favor of the new classes.
llvm-svn: 233509
This ensures that we're building and testing the CompileOnDemand layer, at least
in a basic way.
Currently x86-64 only, and with limited to no library calls enabled (depending
on host platform). Patches welcome. ;)
To enable access to the lazy JIT, this patch replaces the '-use-orcmcjit' lli
option with a new option:
'-jit-kind={ mcjit | orc-mcjit | orc-lazy }'.
All regression tests are updated to use the new option, and one trivial test of
the new lazy JIT is added.
llvm-svn: 233182
The MSVC linker won't produce a .lib file for an executable that doesn't
export anything, and LLVM doesn't maintain dllexport annotations or .def
files listing all C++ symbols. It also doesn't support exporting all
symbols, like binutils ld.
CMake 3.2 changed the Ninja generator to list both the .exe and .lib
files as outputs of executable build targets. Ninja would always re-link
executables with ENABLE_EXPORTS because the .lib output file was not
present, and therefore the target was out of date.
llvm-svn: 232662
In preparation for adding PDB support to LLVM, this moves the
DWARF parsing code to its own subdirectory under DebugInfo, and
renames LLVMDebugInfo to LLVMDebugInfoDWARF.
This is purely a mechanical / build system change.
Differential Revision: http://reviews.llvm.org/D7269
Reviewed by: Eric Christopher
llvm-svn: 227586
This patch adds a new set of JIT APIs to LLVM. The aim of these new APIs is to
cleanly support a wider range of JIT use cases in LLVM, and encourage the
development and contribution of re-usable infrastructure for LLVM JIT use-cases.
These APIs are intended to live alongside the MCJIT APIs, and should not affect
existing clients.
Included in this patch:
1) New headers in include/llvm/ExecutionEngine/Orc that provide a set of
components for building JIT infrastructure.
Implementation code for these headers lives in lib/ExecutionEngine/Orc.
2) A prototype re-implementation of MCJIT (OrcMCJITReplacement) built out of the
new components.
3) Minor changes to RTDyldMemoryManager needed to support the new components.
These changes should not impact existing clients.
4) A new flag for lli, -use-orcmcjit, which will cause lli to use the
OrcMCJITReplacement class as its underlying execution engine, rather than
MCJIT itself.
Tests to follow shortly.
Special thanks to Michael Ilseman, Pete Cooper, David Blaikie, Eric Christopher,
Justin Bogner, and Jim Grosbach for extensive feedback and discussion.
llvm-svn: 226940
Summary:
The default copy and assignment operators for these objects probably don't actually do what the clients intend, so they should be deleted.
Places using the assignment operator to set the value of an option should cast to the option's data type first to call into the override for operator=. Places using the copy constructor just need to be changed to not copy (i.e. passing by const reference instead of value).
Reviewers: dexonsmith, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7114
llvm-svn: 226762
In release builds this is actually possible as without asserts there is
no testing of the actual read bytes and the variables could be partially
uninitialized.
llvm-svn: 224114
Previously, when loading an object file, RuntimeDyld (1) took ownership of the
ObjectFile instance (and associated MemoryBuffer), (2) potentially modified the
object in-place, and (3) returned an ObjectImage that managed ownership of the
now-modified object and provided some convenience methods. This scheme accreted
over several years as features were tacked on to RuntimeDyld, and was both
unintuitive and unsafe (See e.g. http://llvm.org/PR20722).
This patch fixes the issue by removing all ownership and in-place modification
of object files from RuntimeDyld. Existing behavior, including debugger
registration, is preserved.
Noteworthy changes include:
(1) ObjectFile instances are now passed to RuntimeDyld by const-ref.
(2) The ObjectImage and ObjectBuffer classes have been removed entirely, they
existed to model ownership within RuntimeDyld, and so are no longer needed.
(3) RuntimeDyld::loadObject now returns an instance of a new class,
RuntimeDyld::LoadedObjectInfo, which can be used to construct a modified
object suitable for registration with the debugger, following the existing
debugger registration scheme.
(4) The JITRegistrar class has been removed, and the GDBRegistrar class has been
re-written as a JITEventListener.
This should fix http://llvm.org/PR20722 .
llvm-svn: 222810
This patch removes the old JIT memory manager (which does not provide any
useful functionality now that the old JIT is gone), and migrates the few
remaining clients over to SectionMemoryManager.
http://llvm.org/PR20848
llvm-svn: 218316
Take a StringRef instead of a "const char *".
Take a "std::error_code &" instead of a "std::string &" for error.
A create static method would be even better, but this patch is already a bit too
big.
llvm-svn: 216393
Owning the buffer is somewhat inflexible. Some Binaries have sub Binaries
(like Archive) and we had to create dummy buffers just to handle that. It is
also a bad fit for IRObjectFile where the Module wants to own the buffer too.
Keeping this ownership would make supporting IR inside native objects
particularly painful.
This patch focuses in lib/Object. If something elsewhere used to own an Binary,
now it also owns a MemoryBuffer.
This patch introduces a few new types.
* MemoryBufferRef. This is just a pair of StringRefs for the data and name.
This is to MemoryBuffer as StringRef is to std::string.
* OwningBinary. A combination of Binary and a MemoryBuffer. This is needed
for convenience functions that take a filename and return both the
buffer and the Binary using that buffer.
The C api now uses OwningBinary to avoid any change in semantics. I will start
a new thread to see if we want to change it and how.
llvm-svn: 216002
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
llvm-svn: 215154
I am sure we will be finding bits and pieces of dead code for years to
come, but this is a good start.
Thanks to Lang Hames for making MCJIT a good replacement!
llvm-svn: 215111
This starts in MCJIT::getSymbolAddress where the
unique_ptr<object::Binary> is release()d and (after a cast) passed to a
single caller, MCJIT::addObjectFile.
addObjectFile calls RuntimeDyld::loadObject.
RuntimeDld::loadObject calls RuntimeDyldELF::createObjectFromFile
And the pointer is never owned at this point. I say this point, because
the alternative codepath, RuntimeDyldMachO::createObjectFile certainly
does take ownership, so this seemed like a good hint that this was a/the
right place to take ownership.
llvm-svn: 207580
behavior based on other files defining DEBUG_TYPE, which means it cannot
define DEBUG_TYPE at all. This is actually better IMO as it forces folks
to define relevant DEBUG_TYPEs for their files. However, it requires all
files that currently use DEBUG(...) to define a DEBUG_TYPE if they don't
already. I've updated all such files in LLVM and will do the same for
other upstream projects.
This still leaves one important change in how LLVM uses the DEBUG_TYPE
macro going forward: we need to only define the macro *after* header
files have been #include-ed. Previously, this wasn't possible because
Debug.h required the macro to be pre-defined. This commit removes that.
By defining DEBUG_TYPE after the includes two things are fixed:
- Header files that need to provide a DEBUG_TYPE for some inline code
can do so by defining the macro before their inline code and undef-ing
it afterward so the macro does not escape.
- We no longer have rampant ODR violations due to including headers with
different DEBUG_TYPE definitions. This may be mostly an academic
violation today, but with modules these types of violations are easy
to check for and potentially very relevant.
Where necessary to suppor headers with DEBUG_TYPE, I have moved the
definitions below the includes in this commit. I plan to move the rest
of the DEBUG_TYPE macros in LLVM in subsequent commits; this one is big
enough.
The comments in Debug.h, which were hilariously out of date already,
have been updated to reflect the recommended practice going forward.
llvm-svn: 206822
This compiles with no changes to clang/lld/lldb with MSVC and includes
overloads to various functions which are used by those projects and llvm
which have OwningPtr's as parameters. This should allow out of tree
projects some time to move. There are also no changes to libs/Target,
which should help out of tree targets have time to move, if necessary.
llvm-svn: 203083
After this I will set the default back to F_None. The advantage is that
before this patch forgetting to set F_Binary would corrupt a file on windows.
Forgetting to set F_Text produces one that cannot be read in notepad, which
is a better failure mode :-)
llvm-svn: 202052
This enables IO error reports in both the child and server processes.
The scheme still isn't entirely satisfactory and output is jumbled but it beats
having no output at all. This will hopefully unblock ARM support (PR18057).
llvm-svn: 200017
Eliminates the LLI_BUILDING_CHILD build hack from r199885.
Also add a FIXME to remove code that tricks the tests into passing when the
feature fails to work. Please don't do stuff like this, the tests exist for a
reason!
llvm-svn: 199929
Eliminate the copies LLVM's System mmap and cache invalidation code. These were
slowly drifting away from the original version, and moreover the copied code
was a dead end in terms of portability.
We now statically link to Support but in practice with stripping this adds next
to no weight to the resultant binary.
Also avoid installing lli-child-target to the user's $PATH. It's not meant to
be run directly.
llvm-svn: 199881
MCJIT remote execution (ChildTarget+RemoteTargetExternal) protocol was in
dire need of refactoring. It was fail-prone, had no error reporting and
implemented the same message logic on every single function.
This patch rectifies it, and makes it work on ARM, where it was randomly
failing. Other architectures shall profit from this change as well, making
their buildbots and releases more reliable.
llvm-svn: 199261
root path to which object files managed by the LLIObjectCache instance should be
written. This option defaults to "", in which case objects are cached in the
same directory as the bitcode they are derived from.
The load-object-a.ll test has been rewritten to use this option to support
testing in environments where the test directory is not writable.
llvm-svn: 198852
I believe the bot failures on linux systems were due to overestimating the
alignment of object-files within archives, which are only guaranteed to be
two-byte aligned. I have reduced the alignment in
RuntimeDyldELF::createObjectImageFromFile accordingly.
llvm-svn: 198737
- Mark tests as XFAIL:cygming in test/ExecutionEngine/MCJIT/remote.
Rather to suppress them, I'd like to leave them running as XFAIL.
- Revert r193472. RecordMemoryManager no longer resolves __main on cygming.
There are a couple of issues.
- X86 Codegen emits "call __main" in @main for targeting cygming.
It is useless in JIT. FYI, tests are passing when emitting __main is disabled.
- Current remote JIT does not resolve any symbols in child context.
FIXME: __main should be disabled, or remote JIT should resolve __main.
llvm-svn: 193498
This fixes a problem from a previous check-in where a return value was omitted.
Previously the remote/stubs-remote.ll and remote/stubs-sm-pic.ll tests were reporting passes, but they should have been failing. Those tests attempt to link against an external symbol and remote symbol resolution is not supported. The old RemoteMemoryManager implementation resulted in local symbols being used for resolution and the child process crashed but the test didn't notice. With this check-in remote symbol resolution fails, and so the test (correctly) fails.
llvm-svn: 192514
At this time only Unix-based systems are supported. Windows has stubs and should re-route to the simulated mode.
Thanks to Sriram Murali for contributions to this patch.
llvm-svn: 191843
It's useful for the memory managers that are allocating a section to know what the name of the section is.
At a minimum, this is useful for low-level debugging - it's customary for JITs to be able to tell you what
memory they allocated, and as part of any such dump, they should be able to tell you some meta-data about
what each allocation is for. This allows clients that supply their own memory managers to do this.
Additionally, we also envision the SectionName being useful for passing meta-data from within LLVM to an LLVM
client.
This changes both the C and C++ APIs, and all of the clients of those APIs within LLVM. I'm assuming that
it's safe to change the C++ API because that API is allowed to change. I'm assuming that it's safe to change
the C API because we haven't shipped the API in a release yet (LLVM 3.3 doesn't include the MCJIT memory
management C API).
llvm-svn: 191804
Tests to follow.
PIC with small code model and EH frame handling will not work with multiple modules. There are also some rough edges to be smoothed out for remote target support.
llvm-svn: 191722
- warn users when -debug-ir is used with old JIT engine (only partial debug
info is available)
For example, to debug an IR file with GDB (that supports JIT registration), do:
$ gdb --args lli -use-mcjit -debug-ir testcase.ll
(gdb) break main
(gdb) run
<Process continues to lli main>
(gdb) continue
<Process continues to testcase.ll main()
(gdb) step
<Now stepping through the LLVM IR in testcase.ll>
llvm-svn: 185197
On 32-bit hosts %p can print garbage when given a uint64_t, we should
use %llx instead. This only affects the output of the debugging text
produced by lli.
llvm-svn: 182209
EngineBuilder interface required a JITMemoryManager even if it was being used
to construct an MCJIT. But the MCJIT actually wants a RTDyldMemoryManager.
Consequently, the SectionMemoryManager, which is meant for MCJIT, derived
from the JITMemoryManager and then stubbed out a bunch of JITMemoryManager
methods that weren't relevant to the MCJIT.
This patch fixes the situation: it teaches the EngineBuilder that
RTDyldMemoryManager is a supertype of JITMemoryManager, and that it's
appropriate to pass a RTDyldMemoryManager instead of a JITMemoryManager if
we're using the MCJIT. This allows us to remove the stub methods from
SectionMemoryManager, and make SectionMemoryManager a direct subtype of
RTDyldMemoryManager.
llvm-svn: 181820
that work on the LLVMBuild based dependency specification didn't
actually work, we just now maintain dependencies in *3* places instead
of 2. Yay.
There may still be some missing dependencies, I'm still sifting through
the bots and my builds, but this is a step in the right direction.
llvm-svn: 177988
its own library. These functions are bridging between the bitcode reader
and the ll parser which are in different libraries. Previously we didn't
have any good library to do this, and instead played fast and loose with
a "header only" set of interfaces in the Support library. This really
doesn't work well as evidenced by the recent attempt to add timing logic
to the these routines.
As part of this, make them normal functions rather than weird inline
functions, and sink the implementation into the library. Also clean up
the header to be nice and minimal.
This requires updating lots of build system dependencies to specify that
the IRReader library is needed, and several source files to not
implicitly rely upon the header file to transitively include all manner
of other headers.
If you are using IRReader.h, this commit will break you (the header
moved) and you'll need to also update your library usage to include
'irreader'. I will commit the corresponding change to Clang momentarily.
llvm-svn: 177971
This changes the RecordingMemoryManager in lli to use mapped memory rather than malloc to allocate memory for sections and uses a 'near' MemoryBlock to keep the allocations together. This works around a problem in MCJIT where relocations are applied to a generated image immediately oupon generation, which isn't appropriate for the remote case.
llvm-svn: 176057
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
Again, tools are trickier to pick the main module header for than
library source files. I've started to follow the pattern of using
LLVMContext.h when it is included as a stub for program source files.
llvm-svn: 169252
The functionality of SectionMemoryManager is equivalent to the LLIMCJITMemoryManager being replaced except that it allocates memory as RW and later changes it to RX or R as needed. The page permissions are set in the call to MCJIT::finalizeObject.
llvm-svn: 168722
Prior to this patch RuntimeDyld attempted to re-apply relocations every time reassignSectionAddress was called (via MCJIT::mapSectionAddress). In addition to being inefficient and redundant, this led to a problem when a section was temporarily moved too far away from another section with a relative relocation referencing the section being moved. To fix this, I'm adding a new method (finalizeObject) which the client can call to indicate that it is finished rearranging section addresses so the relocations can safely be applied.
llvm-svn: 167400