Commit Graph

358 Commits

Author SHA1 Message Date
Alexey Samsonov 958dab71b3 [LoopVectorize] Use ReplaceInstWithInst() helper where appropriate.
This is mostly an NFC, which increases code readability (instead of
saving old terminator, generating new one in front of old, and deleting
old, we just call a function). However, it would additionaly copy
the debug location from old instruction to replacement, which
would help PR23837.

llvm-svn: 241197
2015-07-01 22:18:30 +00:00
David Majnemer 21a7cfec64 Correct a typo for a LoopVectorize test
I forgot to specify the correct pass.

llvm-svn: 241054
2015-06-30 10:05:43 +00:00
David Majnemer 9f3979fd78 [LoopVectorize] Pointer indicies may be wider than the pointer
If we are dealing with a pointer induction variable, isInductionPHI
gives back a step value of Stride / size of pointer.  However, we might
be indexing with a legal type wider than the pointer width.
Handle this by inserting casts where appropriate instead of crashing.

This fixes PR23954.

llvm-svn: 240877
2015-06-27 08:38:17 +00:00
Michael Zolotukhin 79ff564ef3 [LoopVectorizer] Fix bailing-out condition for OptForSize case.
With option OptForSize enabled, the Loop Vectorizer is not supposed to
create tail loop. The condition checking that was invalid and was not
matching to the comment above.

Patch by Marianne Mailhot-Sarrasin.

llvm-svn: 240556
2015-06-24 17:26:24 +00:00
Hao Liu 32c0539691 [LoopVectorize] Teach Loop Vectorizor about interleaved memory accesses.
Interleaved memory accesses are grouped and vectorized into vector load/store and shufflevector.
E.g. for (i = 0; i < N; i+=2) {
       a = A[i];         // load of even element
       b = A[i+1];       // load of odd element
       ...               // operations on a, b, c, d
       A[i] = c;         // store of even element
       A[i+1] = d;       // store of odd element
     }

  The loads of even and odd elements are identified as an interleave load group, which will be transfered into vectorized IRs like:
     %wide.vec = load <8 x i32>, <8 x i32>* %ptr
     %vec.even = shufflevector <8 x i32> %wide.vec, <8 x i32> undef, <4 x i32> <i32 0, i32 2, i32 4, i32 6>
     %vec.odd = shufflevector <8 x i32> %wide.vec, <8 x i32> undef, <4 x i32> <i32 1, i32 3, i32 5, i32 7>

  The stores of even and odd elements are identified as an interleave store group, which will be transfered into vectorized IRs like:
     %interleaved.vec = shufflevector <4 x i32> %vec.even, %vec.odd, <8 x i32> <i32 0, i32 4, i32 1, i32 5, i32 2, i32 6, i32 3, i32 7> 
     store <8 x i32> %interleaved.vec, <8 x i32>* %ptr

This optimization is currently disabled by defaut. To try it by adding '-enable-interleaved-mem-accesses=true'. 

llvm-svn: 239291
2015-06-08 06:39:56 +00:00
David Majnemer b58f32f7a8 [LoopVectorize] Don't crash on zero-sized types in isInductionPHI
isInductionPHI wants to calculate the stride based on the pointee size.
However, this is not possible when the pointee is zero sized.

This fixes PR23763.

llvm-svn: 239143
2015-06-05 10:52:40 +00:00
Nemanja Ivanovic ce6211f7ff NFC - Test case invokes llc on a file rather than redirected from a file.
This has caused some local failures. Updating the test case to be more
like the majority of the similar test cases.
Committing on behalf of Hubert Tong (hstong@ca.ibm.com).

llvm-svn: 237449
2015-05-15 15:29:53 +00:00
Michael Zolotukhin de63aace8a Populate list of vectorizable functions for Accelerate library.
Summary:
This patch adds majority of supported by Accelerate library functions to the
list of vectorizable functions.

The full list of available vector functions could be found here:
https://developer.apple.com/library/mac/documentation/Performance/Conceptual/vecLib/index.html

Test Plan: Unit tests are added.

Reviewers: hfinkel, aschwaighofer, nadav

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D9543

llvm-svn: 236747
2015-05-07 17:11:51 +00:00
Wei Mi 062c74484d [X86] Disable loop unrolling in loop vectorization pass when VF is 1.
The patch disabled unrolling in loop vectorization pass when VF==1 on x86 architecture,
by setting MaxInterleaveFactor to 1. Unrolling in loop vectorization pass may introduce
the cost of overflow check, memory boundary check and extra prologue/epilogue code when
regular unroller will unroll the loop another time. Disable it when VF==1 remove the
unnecessary cost on x86. The same can be done for other platforms after verifying
interleaving/memory bound checking to be not perf critical on those platforms.

Differential Revision: http://reviews.llvm.org/D9515

llvm-svn: 236613
2015-05-06 17:12:25 +00:00
Duncan P. N. Exon Smith a9308c49ef IR: Give 'DI' prefix to debug info metadata
Finish off PR23080 by renaming the debug info IR constructs from `MD*`
to `DI*`.  The last of the `DIDescriptor` classes were deleted in
r235356, and the last of the related typedefs removed in r235413, so
this has all baked for about a week.

Note: If you have out-of-tree code (like a frontend), I recommend that
you get everything compiling and tests passing with the *previous*
commit before updating to this one.  It'll be easier to keep track of
what code is using the `DIDescriptor` hierarchy and what you've already
updated, and I think you're extremely unlikely to insert bugs.  YMMV of
course.

Back to *this* commit: I did this using the rename-md-di-nodes.sh
upgrade script I've attached to PR23080 (both code and testcases) and
filtered through clang-format-diff.py.  I edited the tests for
test/Assembler/invalid-generic-debug-node-*.ll by hand since the columns
were off-by-three.  It should work on your out-of-tree testcases (and
code, if you've followed the advice in the previous paragraph).

Some of the tests are in badly named files now (e.g.,
test/Assembler/invalid-mdcompositetype-missing-tag.ll should be
'dicompositetype'); I'll come back and move the files in a follow-up
commit.

llvm-svn: 236120
2015-04-29 16:38:44 +00:00
Duncan P. N. Exon Smith 988a7f8b79 DebugInfo: Fix bad debug info for compile units and types
Fix debug info in these tests, which started failing with a WIP patch to
verify compile units and types.  The problems look like they were all
caused by bitrot.  They fell into these categories:

  - Using `!{i32 0}` instead of `!{}`.
  - Using `!{null}` instead of `!{}`.
  - Using `!MDExpression()` instead of `!{}`.
  - Using `!8` instead of `!{!8}`.
  - `file:` references that pointed at `MDCompileUnit`s instead of the
    same `MDFile` as the compile unit.
  - `file:` references that were numerically off-by-one or (off-by-ten).

llvm-svn: 233415
2015-03-27 20:46:33 +00:00
Michael Zolotukhin 6d8a2aa976 TLI: Add addVectorizableFunctionsFromVecLib.
Also, add several entries to vectorizable functions table, and
corresponding tests. The table isn't complete, it'll be populated later.

Review: http://reviews.llvm.org/D8131
llvm-svn: 232531
2015-03-17 19:50:55 +00:00
Michael Zolotukhin c3d60efb1d TTI: Honour cost model for estimating cost of vector-intrinsic and calls.
Review: http://reviews.llvm.org/D8096
llvm-svn: 232528
2015-03-17 19:37:28 +00:00
Duncan P. N. Exon Smith 166121ad0b Verifier: Check debug info intrinsic arguments
Verify that debug info intrinsic arguments are valid.  (These checks
will not recurse through the full debug info graph, so they don't need
to be cordoned of in `DebugInfoVerifier`.)

With those checks in place, changing the `DbgIntrinsicInst` accessors to
downcast to `MDLocalVariable` and `MDExpression` is natural (added isa
specializations in `Metadata.h` to support this).

Added tests to `test/Verifier` for the new -verify checks, and fixed the
debug info in all the in-tree tests.

If you have out-of-tree testcases that have started to fail to -verify,
hopefully the verify checks are helpful.  The most likely problem is
that the expression argument is `!{}` (instead of `!MDExpression()`).

llvm-svn: 232296
2015-03-15 01:21:30 +00:00
David Blaikie f72d05bc7b [opaque pointer type] Add textual IR support for explicit type parameter to gep operator
Similar to gep (r230786) and load (r230794) changes.

Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.

(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)

import fileinput
import sys
import re

rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)

def conv(match):
  line = match.group(1)
  line += match.group(4)
  line += ", "
  line += match.group(2)
  return line

line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
  sys.stdout.write(line[off:match.start()])
  sys.stdout.write(conv(match))
  off = match.end()
sys.stdout.write(line[off:])

llvm-svn: 232184
2015-03-13 18:20:45 +00:00
Kevin Qin 715b01e979 Introduce runtime unrolling disable matadata and use it to mark the scalar loop from vectorization.
Runtime unrolling is an expensive optimization which can bring benefit
only if the loop is hot and iteration number is relatively large enough.
For some loops, we know they are not worth to be runtime unrolled.
The scalar loop from vectorization is one of the cases.

llvm-svn: 231631
2015-03-09 06:14:18 +00:00
Olivier Sallenave 049d803ce0 Do not restrict interleaved unrolling to small loops, depending on the target.
llvm-svn: 231528
2015-03-06 23:12:04 +00:00
Duncan P. N. Exon Smith e274180f0e DebugInfo: Move new hierarchy into place
Move the specialized metadata nodes for the new debug info hierarchy
into place, finishing off PR22464.  I've done bootstraps (and all that)
and I'm confident this commit is NFC as far as DWARF output is
concerned.  Let me know if I'm wrong :).

The code changes are fairly mechanical:

  - Bumped the "Debug Info Version".
  - `DIBuilder` now creates the appropriate subclass of `MDNode`.
  - Subclasses of DIDescriptor now expect to hold their "MD"
    counterparts (e.g., `DIBasicType` expects `MDBasicType`).
  - Deleted a ton of dead code in `AsmWriter.cpp` and `DebugInfo.cpp`
    for printing comments.
  - Big update to LangRef to describe the nodes in the new hierarchy.
    Feel free to make it better.

Testcase changes are enormous.  There's an accompanying clang commit on
its way.

If you have out-of-tree debug info testcases, I just broke your build.

  - `upgrade-specialized-nodes.sh` is attached to PR22564.  I used it to
    update all the IR testcases.
  - Unfortunately I failed to find way to script the updates to CHECK
    lines, so I updated all of these by hand.  This was fairly painful,
    since the old CHECKs are difficult to reason about.  That's one of
    the benefits of the new hierarchy.

This work isn't quite finished, BTW.  The `DIDescriptor` subclasses are
almost empty wrappers, but not quite: they still have loose casting
checks (see the `RETURN_FROM_RAW()` macro).  Once they're completely
gutted, I'll rename the "MD" classes to "DI" and kill the wrappers.  I
also expect to make a few schema changes now that it's easier to reason
about everything.

llvm-svn: 231082
2015-03-03 17:24:31 +00:00
David Blaikie a79ac14fa6 [opaque pointer type] Add textual IR support for explicit type parameter to load instruction
Essentially the same as the GEP change in r230786.

A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)

import fileinput
import sys
import re

pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")

for line in sys.stdin:
  sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7649

llvm-svn: 230794
2015-02-27 21:17:42 +00:00
David Blaikie 79e6c74981 [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

llvm-svn: 230786
2015-02-27 19:29:02 +00:00
Chandler Carruth b89464a9b6 [x86,sdag] Two interrelated changes to the x86 and sdag code.
First, don't combine bit masking into vector shuffles (even ones the
target can handle) once operation legalization has taken place. Custom
legalization of vector shuffles may exist for these patterns (making the
predicate return true) but that custom legalization may in some cases
produce the exact bit math this matches. We only really want to handle
this prior to operation legalization.

However, the x86 backend, in a fit of awesome, relied on this. What it
would do is mark VSELECTs as expand, which would turn them into
arithmetic, which this would then match back into vector shuffles, which
we would then lower properly. Amazing.

Instead, the second change is to teach the x86 backend to directly form
vector shuffles from VSELECT nodes with constant conditions, and to mark
all of the vector types we support lowering blends as shuffles as custom
VSELECT lowering. We still mark the forms which actually support
variable blends as *legal* so that the custom lowering is bypassed, and
the legal lowering can even be used by the vector shuffle legalization
(yes, i know, this is confusing. but that's how the patterns are
written).

This makes the VSELECT lowering much more sensible, and in fact should
fix a bunch of bugs with it. However, as you'll see in the test cases,
right now what it does is point out the *hilarious* deficiency of the
new vector shuffle lowering when it comes to blends. Fortunately, my
very next patch fixes that. I can't submit it yet, because that patch,
somewhat obviously, forms the exact and/or pattern that the DAG combine
is matching here! Without this patch, teaching the vector shuffle
lowering to produce the right code infloops in the DAG combiner. With
this patch alone, we produce terrible code but at least lower through
the right paths. With both patches, all the regressions here should be
fixed, and a bunch of the improvements (like using 2 shufps with no
memory loads instead of 2 andps with memory loads and an orps) will
stay. Win!

There is one other change worth noting here. We had hilariously wrong
vectorization cost estimates for vselect because we fell through to the
code path that assumed all "expand" vector operations are scalarized.
However, the "expand" lowering of VSELECT is vector bit math, most
definitely not scalarized. So now we go back to the correct if horribly
naive cost of "1" for "not scalarized". If anyone wants to add actual
modeling of shuffle costs, that would be cool, but this seems an
improvement on its own. Note the removal of 16 and 32 "costs" for doing
a blend. Even in SSE2 we can blend in fewer than 16 instructions. ;] Of
course, we don't right now because of OMG bad code, but I'm going to fix
that. Next patch. I promise.

llvm-svn: 229835
2015-02-19 10:36:19 +00:00
Adam Nemet acd22e1677 [LoopAccesses] Modify test to also check symbolic strides with memchecks
See the comment in the code.

This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.

llvm-svn: 229627
2015-02-18 03:43:32 +00:00
David Blaikie eba8c88a90 Reformat test case to be easier to migrate to typeless pointers.
llvm-svn: 229275
2015-02-15 04:13:53 +00:00
Olivier Sallenave 83aec218e7 Check interleaving without relying on debug output.
llvm-svn: 229027
2015-02-13 02:13:57 +00:00
NAKAMURA Takumi 34d46fa297 llvm/test/Transforms/LoopVectorize/PowerPC/small-loop-rdx.ll REQUIRES +Asserts due to -debug.
llvm-svn: 228989
2015-02-13 00:21:34 +00:00
Olivier Sallenave 05e69157b6 Change max interleave factor to 12 for POWER7 and POWER8.
llvm-svn: 228973
2015-02-12 22:57:58 +00:00
Benjamin Kramer e8cb17f282 Update test case.
llvm-svn: 228956
2015-02-12 20:40:19 +00:00
Hao Liu 6bd67c08fa Move the target specific test case arbitrary-induction-step.ll to test/Transforms/LoopVectorize/AArch64 folder.
llvm-svn: 227561
2015-01-30 07:33:31 +00:00
Hao Liu 8de4f8b1b5 [LoopVectorize] Induction variables: support arbitrary constant step.
Previously, only -1 and +1 step values are supported for induction variables. This patch extends LV to support
arbitrary constant steps.
Initial patch by Alexey Volkov. Some bug fixes are added in the following version.

Differential Revision: http://reviews.llvm.org/D6051 and http://reviews.llvm.org/D7193

llvm-svn: 227557
2015-01-30 05:02:21 +00:00
Elena Demikhovsky 079b2d8c0c Fixed a bug in masked load/store in reversed loop.
Added a test.

The bug was submitted to bugzilla:
http://llvm.org/bugs/show_bug.cgi?id=22225

llvm-svn: 226791
2015-01-22 08:20:06 +00:00
Duncan P. N. Exon Smith 9885469922 IR: Move MDLocation into place
This commit moves `MDLocation`, finishing off PR21433.  There's an
accompanying clang commit for frontend testcases.  I'll attach the
testcase upgrade script I used to PR21433 to help out-of-tree
frontends/backends.

This changes the schema for `DebugLoc` and `DILocation` from:

    !{i32 3, i32 7, !7, !8}

to:

    !MDLocation(line: 3, column: 7, scope: !7, inlinedAt: !8)

Note that empty fields (line/column: 0 and inlinedAt: null) don't get
printed by the assembly writer.

llvm-svn: 226048
2015-01-14 22:27:36 +00:00
Duncan P. N. Exon Smith 090a19bd3c IR: Add 'distinct' MDNodes to bitcode and assembly
Propagate whether `MDNode`s are 'distinct' through the other types of IR
(assembly and bitcode).  This adds the `distinct` keyword to assembly.

Currently, no one actually calls `MDNode::getDistinct()`, so these nodes
only get created for:

  - self-references, which are never uniqued, and
  - nodes whose operands are replaced that hit a uniquing collision.

The concept of distinct nodes is still not quite first-class, since
distinct-ness doesn't yet survive across `MapMetadata()`.

Part of PR22111.

llvm-svn: 225474
2015-01-08 22:38:29 +00:00
Michael Kuperstein 6ae456b0d7 Fix broken test from r225159.
llvm-svn: 225164
2015-01-05 12:34:01 +00:00
Jiangning Liu 40c1b35292 Fixed a bug in memory dependence checking module of loop vectorization. The following loop should not be vectorized with current algorithm.
{code}
// loop body
   ... = a[i]          (1)
    ... = a[i+1]       (2)
 .......
a[i+1] = ....          (3)
   a[i] = ...          (4)
{code}

The algorithm tries to collect memory access candidates from AliasSetTracker, and then check memory dependences one another. The memory accesses are unique in AliasSetTracker, and a single memory access in AliasSetTracker may map to multiple entries in AccessAnalysis, which could cover both 'read' and 'write'. Originally the algorithm only checked 'write' entry in Accesses if only 'write' exists. This is incorrect and the consequence is it ignored all read access, and finally some RAW and WAR dependence are missed.

For the case given above, if we ignore two reads, the dependence between (1) and (3) would not be able to be captured, and finally this loop will be incorrectly vectorized.

The fix simply inserts a new loop to find all entries in Accesses. Since it will skip most of all other memory accesses by checking the Value pointer at the very beginning of the loop, it should not increase compile-time visibly.

llvm-svn: 225159
2015-01-05 10:08:58 +00:00
Elena Demikhovsky f5b72afff4 Masked Load and Store Intrinsics in loop vectorizer.
The loop vectorizer optimizes loops containing conditional memory
accesses by generating masked load and store intrinsics.
This decision is target dependent.

http://reviews.llvm.org/D6527

llvm-svn: 224334
2014-12-16 11:50:42 +00:00
Duncan P. N. Exon Smith be7ea19b58 IR: Make metadata typeless in assembly
Now that `Metadata` is typeless, reflect that in the assembly.  These
are the matching assembly changes for the metadata/value split in
r223802.

  - Only use the `metadata` type when referencing metadata from a call
    intrinsic -- i.e., only when it's used as a `Value`.

  - Stop pretending that `ValueAsMetadata` is wrapped in an `MDNode`
    when referencing it from call intrinsics.

So, assembly like this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata !{i32 %v}, metadata !0)
      call void @llvm.foo(metadata !{i32 7}, metadata !0)
      call void @llvm.foo(metadata !1, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{metadata !3}, metadata !0)
      ret void, !bar !2
    }
    !0 = metadata !{metadata !2}
    !1 = metadata !{i32* @global}
    !2 = metadata !{metadata !3}
    !3 = metadata !{}

turns into this:

    define @foo(i32 %v) {
      call void @llvm.foo(metadata i32 %v, metadata !0)
      call void @llvm.foo(metadata i32 7, metadata !0)
      call void @llvm.foo(metadata i32* @global, metadata !0)
      call void @llvm.foo(metadata !3, metadata !0)
      call void @llvm.foo(metadata !{!3}, metadata !0)
      ret void, !bar !2
    }
    !0 = !{!2}
    !1 = !{i32* @global}
    !2 = !{!3}
    !3 = !{}

I wrote an upgrade script that handled almost all of the tests in llvm
and many of the tests in cfe (even handling many `CHECK` lines).  I've
attached it (or will attach it in a moment if you're speedy) to PR21532
to help everyone update their out-of-tree testcases.

This is part of PR21532.

llvm-svn: 224257
2014-12-15 19:07:53 +00:00
Michael Zolotukhin ea8327b80f PR21302. Vectorize only bottom-tested loops.
rdar://problem/18886083

llvm-svn: 223171
2014-12-02 22:59:06 +00:00
Michael Zolotukhin 540580ca06 Apply loop-rotate to several vectorizer tests.
Such loops shouldn't be vectorized due to the loops form.
After applying loop-rotate (+simplifycfg) the tests again start to check
what they are intended to check.

llvm-svn: 223170
2014-12-02 22:59:02 +00:00
Duncan P. N. Exon Smith 9bc81fbe92 Revert "Masked Vector Load and Store Intrinsics."
This reverts commit r222632 (and follow-up r222636), which caused a host
of LNT failures on an internal bot.  I'll respond to the commit on the
list with a reproduction of one of the failures.

Conflicts:
	lib/Target/X86/X86TargetTransformInfo.cpp

llvm-svn: 222936
2014-11-28 21:29:14 +00:00
Matt Arsenault 238ff1ad1e Bug 21610: Canonicalize min/max fcmp selects to use ordered comparisons
llvm-svn: 222705
2014-11-24 23:15:18 +00:00
Elena Demikhovsky 9e5089a938 Masked Vector Load and Store Intrinsics.
Introduced new target-independent intrinsics in order to support masked vector loads and stores. The loop vectorizer optimizes loops containing conditional memory accesses by generating these intrinsics for existing targets AVX2 and AVX-512. The vectorizer asks the target about availability of masked vector loads and stores.
Added SDNodes for masked operations and lowering patterns for X86 code generator.
Examples:
<16 x i32> @llvm.masked.load.v16i32(i8* %addr, <16 x i32> %passthru, i32 4 /* align */, <16 x i1> %mask)
declare void @llvm.masked.store.v8f64(i8* %addr, <8 x double> %value, i32 4, <8 x i1> %mask)

Scalarizer for other targets (not AVX2/AVX-512) will be done in a separate patch.

http://reviews.llvm.org/D6191

llvm-svn: 222632
2014-11-23 08:07:43 +00:00
Suyog Sarda beb064bd94 Addition to r216371 (SLP and Loop Vectorization) and r218607 where
cost model for signed division by power of 2 was improved for AArch64.
The revision r218607 missed test case for Loop Vectorization.
Adding it in this revision.

Differential Revision: http://reviews.llvm.org/D6181

llvm-svn: 221674
2014-11-11 07:39:27 +00:00
David Majnemer bf93e7c7d3 LoopVectorize: Don't assume pointees are sized
A pointer's pointee might not be sized: the pointee could be a function.

Report this as IK_NoInduction when calculating isInductionVariable.

This fixes PR21508.

llvm-svn: 221501
2014-11-07 00:31:14 +00:00
Michael Zolotukhin 9b9624de0c Correctly update dom-tree after loop vectorizer.
llvm-svn: 221009
2014-10-31 22:28:03 +00:00
Matt Arsenault d6511b49ac Add minnum / maxnum intrinsics
These are named following the IEEE-754 names for these
functions, rather than the libm fmin / fmax to avoid
possible ambiguities. Some languages may implement something
resembling fmin / fmax which return NaN if either operand is
to propagate errors. These implement the IEEE-754 semantics
of returning the other operand if either is a NaN representing
missing data.

llvm-svn: 220341
2014-10-21 23:00:20 +00:00
Hal Finkel 1a600faba0 [LoopVectorize] Ignore @llvm.assume for cost estimates and legality
A few minor changes to prevent @llvm.assume from interfering with loop
vectorization. First, treat @llvm.assume like the lifetime intrinsics, which
are scalarized (but don't otherwise interfere with the legality checking).
Second, ignore the cost of ephemeral instructions in the loop (these will go
away anyway during CodeGen).

Alignment assumptions and other uses of @llvm.assume can often end up inside of
loops that should be vectorized (this is not uncommon for assumptions generated
by __attribute__((align_value(n))), for example).

llvm-svn: 219741
2014-10-14 22:59:49 +00:00
Duncan P. N. Exon Smith 176b691d32 Revert "Revert "DI: Fold constant arguments into a single MDString""
This reverts commit r218918, effectively reapplying r218914 after fixing
an Ocaml bindings test and an Asan crash.  The root cause of the latter
was a tightened-up check in `DILexicalBlock::Verify()`, so I'll file a
PR to investigate who requires the loose check (and why).

Original commit message follows.

--

This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString.  Integers are stringified and
a `\0` character is used as a separator.

Part of PR17891.

Note: I've attached my testcases upgrade scripts to the PR.  If I've
just broken your out-of-tree testcases, they might help.

llvm-svn: 219010
2014-10-03 20:01:09 +00:00
Duncan P. N. Exon Smith 786cd049fc Revert "DI: Fold constant arguments into a single MDString"
This reverts commit r218914 while I investigate some bots.

llvm-svn: 218918
2014-10-02 22:15:31 +00:00
Duncan P. N. Exon Smith 571f97bd90 DI: Fold constant arguments into a single MDString
This patch addresses the first stage of PR17891 by folding constant
arguments together into a single MDString.  Integers are stringified and
a `\0` character is used as a separator.

Part of PR17891.

Note: I've attached my testcases upgrade scripts to the PR.  If I've
just broken your out-of-tree testcases, they might help.

llvm-svn: 218914
2014-10-02 21:56:57 +00:00
Adrian Prantl 87b7eb9d0f Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

Note: I accidentally committed a bogus older version of this patch previously.
llvm-svn: 218787
2014-10-01 18:55:02 +00:00
Adrian Prantl b458dc2eee Revert r218778 while investigating buldbot breakage.
"Move the complex address expression out of DIVariable and into an extra"

llvm-svn: 218782
2014-10-01 18:10:54 +00:00
Adrian Prantl 25a7174e7a Move the complex address expression out of DIVariable and into an extra
argument of the llvm.dbg.declare/llvm.dbg.value intrinsics.

Previously, DIVariable was a variable-length field that has an optional
reference to a Metadata array consisting of a variable number of
complex address expressions. In the case of OpPiece expressions this is
wasting a lot of storage in IR, because when an aggregate type is, e.g.,
SROA'd into all of its n individual members, the IR will contain n copies
of the DIVariable, all alike, only differing in the complex address
reference at the end.

By making the complex address into an extra argument of the
dbg.value/dbg.declare intrinsics, all of the pieces can reference the
same variable and the complex address expressions can be uniqued across
the CU, too.
Down the road, this will allow us to move other flags, such as
"indirection" out of the DIVariable, too.

The new intrinsics look like this:
declare void @llvm.dbg.declare(metadata %storage, metadata %var, metadata %expr)
declare void @llvm.dbg.value(metadata %storage, i64 %offset, metadata %var, metadata %expr)

This patch adds a new LLVM-local tag to DIExpressions, so we can detect
and pretty-print DIExpression metadata nodes.

What this patch doesn't do:

This patch does not touch the "Indirect" field in DIVariable; but moving
that into the expression would be a natural next step.

http://reviews.llvm.org/D4919
rdar://problem/17994491

Thanks to dblaikie and dexonsmith for reviewing this patch!

llvm-svn: 218778
2014-10-01 17:55:39 +00:00
Sanjay Patel b653de1ada Rename getMaximumUnrollFactor -> getMaxInterleaveFactor; also rename option names controlling this variable.
"Unroll" is not the appropriate name for this variable. Clang already uses 
the term "interleave" in pragmas and metadata for this.

Differential Revision: http://reviews.llvm.org/D5066

llvm-svn: 217528
2014-09-10 17:58:16 +00:00
Sanjay Patel 5ad239e15a Add a convenience method to copy wrapping, exact, and fast-math flags (NFC).
The loop vectorizer preserves wrapping, exact, and fast-math properties of scalar instructions.
This patch adds a convenience method to make that operation easier because we need to do this
in the loop vectorizer, SLP vectorizer, and possibly other places.

Although this is a 'no functional change' patch, I've added a testcase to verify that the exact
flag is preserved by the loop vectorizer. The wrapping and fast-math flags are already checked
in existing testcases.

Differential Revision: http://reviews.llvm.org/D5138

llvm-svn: 216886
2014-09-01 18:44:57 +00:00
Renato Golin 86a6c3f269 Small refactor on VectorizerHint for deduplication
Previously, the hint mechanism relied on clean up passes to remove redundant
metadata, which still showed up if running opt at low levels of optimization.
That also has shown that multiple nodes of the same type, but with different
values could still coexist, even if temporary, and cause confusion if the
next pass got the wrong value.

This patch makes sure that, if metadata already exists in a loop, the hint
mechanism will never append a new node, but always replace the existing one.
It also enhances the algorithm to cope with more metadata types in the future
by just adding a new type, not a lot of code.

Re-applying again due to MSVC 2013 being minimum requirement, and this patch
having C++11 that MSVC 2012 didn't support.

Fixes PR20655.

llvm-svn: 216870
2014-09-01 10:00:17 +00:00
Karthik Bhat 7f33ff7dea Allow vectorization of division by uniform power of 2.
This patch adds support to recognize division by uniform power of 2 and modifies the cost table to vectorize division by uniform power of 2 whenever possible.
Updates Cost model for Loop and SLP Vectorizer.The cost table is currently only updated for X86 backend.
Thanks to Hal, Andrea, Sanjay for the review. (http://reviews.llvm.org/D4971)

llvm-svn: 216371
2014-08-25 04:56:54 +00:00
Renato Golin 06d601fb3e Revert "Small refactor on VectorizerHint for deduplication"
This reverts commit r215994 because MSVC 2012 can't cope with its C++11 goodness.

llvm-svn: 215999
2014-08-19 18:08:50 +00:00
Renato Golin dd6394d833 Small refactor on VectorizerHint for deduplication
Previously, the hint mechanism relied on clean up passes to remove redundant
metadata, which still showed up if running opt at low levels of optimization.
That also has shown that multiple nodes of the same type, but with different
values could still coexist, even if temporary, and cause confusion if the
next pass got the wrong value.

This patch makes sure that, if metadata already exists in a loop, the hint
mechanism will never append a new node, but always replace the existing one.
It also enhances the algorithm to cope with more metadata types in the future
by just adding a new type, not a lot of code.

llvm-svn: 215994
2014-08-19 17:30:43 +00:00
James Molloy 65b08f5e46 [LoopVectorizer] Enable support for floating-point subtraction reductions
llvm-svn: 215200
2014-08-08 12:41:08 +00:00
Tyler Nowicki 064896bbc5 Add diagnostics to the vectorizer cost model.
When the cost model determines vectorization is not possible/profitable these remarks print an analysis of that decision.

Note that in selectVectorizationFactor() we can assume that OptForSize and ForceVectorization are mutually exclusive.

Reviewed by Arnold Schwaighofer

llvm-svn: 214599
2014-08-02 00:14:03 +00:00
Tyler Nowicki b5a65395cc Improve the remark generated for -Rpass-missed.
The current remark is ambiguous and makes it sounds like explicitly specifying vectorization will allow the loop to be vectorized. This is not the case. The improved remark directs the user to -Rpass-analysis=loop-vectorize to determine the cause of the pass-miss.

Reviewed by Arnold Schwaighofer`

llvm-svn: 214445
2014-07-31 21:22:22 +00:00
Tyler Nowicki 9fe497fcac Improve the remark generated when a variable that is used outside the loop is not a reduction or induction variable.
Reviewed by Arnold Schwaighofer

llvm-svn: 214440
2014-07-31 21:02:40 +00:00
Mark Heffernan 9d20e42765 Rename metadata llvm.loop.vectorize.unroll to llvm.loop.vectorize.interleave.
llvm-svn: 213588
2014-07-21 23:11:03 +00:00
Hal Finkel 7ae00a1282 [LoopVectorize] Use AA to partition potential dependency checks
Prior to this change, the loop vectorizer did not make use of the alias
analysis infrastructure. Instead, it performed memory dependence analysis using
ScalarEvolution-based linear dependence checks within equivalence classes
derived from the results of ValueTracking's GetUnderlyingObjects.

Unfortunately, this meant that:
  1. The loop vectorizer had logic that essentially duplicated that in BasicAA
     for aliasing based on identified objects.
  2. The loop vectorizer could not partition the space of dependency checks
     based on information only easily available from within AA (TBAA metadata is
     currently the prime example).

This means, for example, regardless of whether -fno-strict-aliasing was
provided, the vectorizer would only vectorize this loop with a runtime
memory-overlap check:

void foo(int *a, float *b) {
  for (int i = 0; i < 1600; ++i)
    a[i] = b[i];
}

This is suboptimal because the TBAA metadata already provides the information
necessary to show that this check unnecessary. Of course, the vectorizer has a
limit on the number of such checks it will insert, so in practice, ignoring
TBAA means not vectorizing more-complicated loops that we should.

This change causes the vectorizer to use an AliasSetTracker to keep track of
the pointers in the loop. The resulting alias sets are then used to partition
the space of dependency checks, and potential runtime checks; this results in
more-efficient vectorizations.

When pointer locations are added to the AliasSetTracker, two things are done:
  1. The location size is set to UnknownSize (otherwise you'd not catch
     inter-iteration dependencies)
  2. For instructions in blocks that would need to be predicated, TBAA is
     removed (because the metadata might have a control dependency on the condition
     being speculated).

For non-predicated blocks, you can leave the TBAA metadata. This is safe
because you can't have an iteration dependency on the TBAA metadata (if you
did, and you unrolled sufficiently, you'd end up with the same pointer value
used by two accesses that TBAA says should not alias, and that would yield
undefined behavior).

llvm-svn: 213486
2014-07-20 23:07:52 +00:00
Hal Finkel 4f7d55aac8 [LoopVectorize] Propagate known metadata to vectorized instructions
There are some kinds of metadata that are safe to propagate from the scalar
instructions to the vector instructions (fpmath and tbaa currently).

Regarding TBAA, one might worry about propagating it on if-converted loads and
stores, because the metadata might have had a control dependency on the
condition, and thus actually aliased with some other non-speculated memory
access when the condition was false. However, this would be caught by the
runtime overlap checks.

llvm-svn: 213452
2014-07-19 13:33:16 +00:00
Tyler Nowicki 641d8a06bd Emit warnings if vectorization is forced and fails.
This patch modifies the existing DiagnosticInfo system to create a generic base
class that is inherited to produce diagnostic-based warnings. This is used by
the loop vectorizer to trigger a warning when vectorization is forced and
fails. Several tests have been added to verify this behavior.

Reviewed by: Arnold Schwaighofer

llvm-svn: 213110
2014-07-16 00:36:00 +00:00
Aditya Nandakumar 0b5a674243 When we sink an instruction, this can open up opportunity for the operands to be sunk - add them to the worklist
llvm-svn: 212847
2014-07-11 21:49:39 +00:00
Adam Nemet 2820a5b9e9 [X86] AVX512: Enable it in the Loop Vectorizer
This lets us experiment with 512-bit vectorization without passing
force-vector-width manually.

The code generated for a simple integer memset loop is properly vectorized.
Disassembly is still broken for it though :(.

llvm-svn: 212634
2014-07-09 18:22:33 +00:00
David Majnemer d1bea693e2 IR: Fold away compares between GV GEPs and GVs
A GEP of a non-weak global variable will not be equivalent to another
non-weak global variable or a GEP of such a variable.

Differential Revision: http://reviews.llvm.org/D4238

llvm-svn: 212360
2014-07-04 22:05:26 +00:00
Tyler Nowicki 4b07b00786 Add Rpass-missed and Rpass-analysis reports to the loop vectorizer. The remarks give the vector width of vectorized loops and a brief analysis of loops that fail to be vectorized. For example, an analysis will be generated for loops containing control flow that cannot be simplified to a select. The optimization remarks also give the debug location of expressions that cannot be vectorized, for example the location of an unvectorizable call.
Reviewed by: Arnold Schwaighofer

llvm-svn: 211721
2014-06-25 17:50:15 +00:00
Eli Bendersky 5d5e18da3e Rename loop unrolling and loop vectorizer metadata to have a common prefix.
[LLVM part]

These patches rename the loop unrolling and loop vectorizer metadata
such that they have a common 'llvm.loop.' prefix.  Metadata name
changes:

llvm.vectorizer.* => llvm.loop.vectorizer.*
llvm.loopunroll.* => llvm.loop.unroll.*

This was a suggestion from an earlier review
(http://reviews.llvm.org/D4090) which added the loop unrolling
metadata. 

Patch by Mark Heffernan.

llvm-svn: 211710
2014-06-25 15:41:00 +00:00
Diego Novillo 56653fdada Add new debug kind LocTrackingOnly.
Summary:
This new debug emission kind supports emitting line location
information in all instructions, but stops code generation
from emitting debug info to the final output.

This mode is useful when the backend wants to track source
locations during code generation, but it does not want to
produce debug info. This is currently used by optimization
remarks (-pass-remarks, -pass-remarks-missed and
-pass-remarks-analysis).

To prevent debug info emission, DIBuilder never inserts the
annotation 'llvm.dbg.cu' when LocTrackingOnly is enabled.

Reviewers: echristo, dblaikie

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D4234

llvm-svn: 211609
2014-06-24 17:02:03 +00:00
Arnold Schwaighofer c11107cb1e LoopVectorizer: Fix a dominance issue
The induction variables start value needs to be defined before we branch
(overflow check) to the scalar preheader where we used it.

llvm-svn: 211460
2014-06-22 03:38:59 +00:00
Alp Toker d3d017cf00 Reduce verbiage of lit.local.cfg files
We can just split targets_to_build in one place and make it immutable.

llvm-svn: 210496
2014-06-09 22:42:55 +00:00
Alexey Samsonov ad81f0f419 Use AArch64 instead of now removed ARM64 in test configs
llvm-svn: 210229
2014-06-05 00:25:30 +00:00
Karthik Bhat 5ab7795649 Allow vectorization of intrinsics such as powi,cttz and ctlz in Loop and SLP Vectorizer.
This patch adds support to vectorize intrinsics such as powi, cttz and ctlz in Vectorizer. These intrinsics are different from other
intrinsics as second argument to these function must be same in order to vectorize them and it should be represented as a scalar.
Review: http://reviews.llvm.org/D3851#inline-32769 and http://reviews.llvm.org/D3937#inline-32857

llvm-svn: 209873
2014-05-30 04:31:24 +00:00
Arnold Schwaighofer e2067680a6 LoopVectorizer: Add a check that the backedge taken count + 1 does not overflow
The loop vectorizer instantiates be-taken-count + 1 as the loop iteration count.
If this expression overflows the generated code was invalid.

In case of overflow the code now jumps to the scalar loop.

Fixes PR17288.

llvm-svn: 209854
2014-05-29 22:10:01 +00:00
Tim Northover 3b0846e8f7 AArch64/ARM64: move ARM64 into AArch64's place
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.

"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.

This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.

llvm-svn: 209577
2014-05-24 12:50:23 +00:00
Tim Northover cc08e1fe1b AArch64/ARM64: remove AArch64 from tree prior to renaming ARM64.
I'm doing this in two phases for a better "git blame" record. This
commit removes the previous AArch64 backend and redirects all
functionality to ARM64. It also deduplicates test-lines and removes
orphaned AArch64 tests.

The next step will be "git mv ARM64 AArch64" and rewire most of the
tests.

Hopefully LLVM is still functional, though it would be even better if
no-one ever had to care because the rename happens straight
afterwards.

llvm-svn: 209576
2014-05-24 12:42:26 +00:00
Adam Nemet 63e4b30f79 [Test] Trim unnecessary .c and .cpp from config.suffix in lit.local.cfg
Tested by comparing make check VERBOSE=1 before and after to make sure
no tests are missed.  (VERBOSE=1 prints the list of tests.)

Only one test :( remains where .cpp is required:

tools/llvm-cov/range_based_for.cpp:// RUN: llvm-cov range_based_for.cpp | FileCheck %s --check-prefix=STDOUT

The topic was discussed in this thread:
http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20140428/214905.html

llvm-svn: 208621
2014-05-12 19:57:31 +00:00
Serge Pavlov 9ef66a8266 Reorder shuffle and binary operation.
This patch enables transformations:

    BinOp(shuffle(v1), shuffle(v2)) -> shuffle(BinOp(v1, v2))
    BinOp(shuffle(v1), const1) -> shuffle(BinOp, const2)

They allow to eliminate extra shuffles in some cases.

Differential Revision: http://reviews.llvm.org/D3525

llvm-svn: 208488
2014-05-11 08:46:12 +00:00
Hal Finkel 6532c20faa Move late partial-unrolling thresholds into the processor definitions
The old method used by X86TTI to determine partial-unrolling thresholds was
messy (because it worked by testing target features), and also would not
correctly identify the target CPU if certain target features were disabled.
After some discussions on IRC with Chandler et al., it was decided that the
processor scheduling models were the right containers for this information
(because it is often tied to special uop dispatch-buffer sizes).

This does represent a small functionality change:
 - For generic x86-64 (which uses the SB model and, thus, will get some
   unrolling).
 - For AMD cores (because they still currently use the SB scheduling model)
 - For Haswell (based on benchmarking by Louis Gerbarg, it was decided to bump
   the default threshold to 50; we're working on a test case for this).
Otherwise, nothing has changed for any other targets. The logic, however, has
been moved into BasicTTI, so other targets may now also opt-in to this
functionality simply by setting LoopMicroOpBufferSize in their processor
model definitions.

llvm-svn: 208289
2014-05-08 09:14:44 +00:00
Diego Novillo cd64780d18 Fix vectorization remarks.
This patch changes the vectorization remarks to also inform when
vectorization is possible but not beneficial.

Added tests to exercise some loop remarks.

llvm-svn: 207574
2014-04-29 20:06:10 +00:00
Zinovy Nis d373fec199 [OPENMP][LV][D3423] Respect Hints.Force meta-data for loops in LoopVectorizer
llvm-svn: 207512
2014-04-29 08:55:11 +00:00
Zinovy Nis 27c486ffe1 [CLNUP] Test commit. Remove newline.
llvm-svn: 207089
2014-04-24 08:42:58 +00:00
Alexander Musman f0785f4db4 [LV] Statistics numbers for LoopVectorize introduced: a number of analyzed loops & a number of vectorized loops.
Use -stats to see how many loops were analyzed for possible vectorization and how many of them were actually vectorized.
Patch by Zinovy Nis

Differential Revision: http://reviews.llvm.org/D3438

llvm-svn: 206956
2014-04-23 08:40:37 +00:00
Jiangning Liu 300a6b84f2 Add missing config file for newly added test case introduced by r206563.
llvm-svn: 206567
2014-04-18 09:05:50 +00:00
Jiangning Liu ad874fca28 This commit allows vectorized loops to be unrolled by a factor of 2 for AArch64.
A new test case is also added for ARM64.

Patched by Z.Zheng

llvm-svn: 206563
2014-04-18 07:57:54 +00:00
NAKAMURA Takumi 0ec1918675 vect.omp.persistence.ll REQUIRES asserts due to -debug-only.
llvm-svn: 206271
2014-04-15 10:12:47 +00:00
Alexey Bataev b97f9e8698 D3348 - [BUG] "Rotate Loop" pass kills "llvm.vectorizer.enable" metadata
llvm-svn: 206266
2014-04-15 09:37:30 +00:00
Hal Finkel b0ebdc0f43 [LoopVectorizer] Count dependencies of consecutive pointers as uniforms
For the purpose of calculating the cost of the loop at various vectorization
factors, we need to count dependencies of consecutive pointers as uniforms
(which means that the VF = 1 cost is used for all overall VF values).

For example, the TSVC benchmark function s173 has:
  ...
  %3 = add nsw i64 %indvars.iv, 16000
  %arrayidx8 = getelementptr inbounds %struct.GlobalData* @global_data, i64 0, i32 0, i64 %3
  ...
and we must realize that the add will be a scalar in order to correctly deduce
it to be profitable to vectorize this on PowerPC with VSX enabled. In fact, all
dependencies of a consecutive pointer must be a scalar (uniform), and so we
simply need to add all consecutive pointers to the worklist that currently
detects collects uniforms.

Fixes PR19296.

llvm-svn: 205387
2014-04-02 02:34:49 +00:00
Hal Finkel 2eed29f3c8 Implement X86TTI::getUnrollingPreferences
This provides an initial implementation of getUnrollingPreferences for x86.
getUnrollingPreferences is used by the generic (concatenation) unroller, which
is distinct from the unrolling done by the loop vectorizer. Many modern x86
cores have some kind of uop cache and loop-stream detector (LSD) used to
efficiently dispatch small loops, and taking full advantage of this requires
unrolling small loops (small here means 10s of uops).

These caches also have limits on the number of taken branches in the loop, and
so we also cap the loop unrolling factor based on the maximum "depth" of the
loop. This is currently calculated with a partial DFS traversal (partial
because it will stop early if the path length grows too much). This is still an
approximation, and one that is both conservative (because it does not account
for branches eliminated via block placement) and optimistic (because it is only
recording the maximum depth over minimum paths). Nevertheless, because the
loops that fit in these uop caches are so small, it is not clear how much the
details matter.

The original set of patches posted for review produced the following test-suite
performance results (from the TSVC benchmark) at that time:
  ControlLoops-dbl - 13% speedup
  ControlLoops-flt - 15% speedup
  Reductions-dbl - 7.5% speedup

llvm-svn: 205348
2014-04-01 18:50:34 +00:00
Hal Finkel 86b3064f2b Move partial/runtime unrolling late in the pipeline
The generic (concatenation) loop unroller is currently placed early in the
standard optimization pipeline. This is a good place to perform full unrolling,
but not the right place to perform partial/runtime unrolling. However, most
targets don't enable partial/runtime unrolling, so this never mattered.

However, even some x86 cores benefit from partial/runtime unrolling of very
small loops, and follow-up commits will enable this. First, we need to move
partial/runtime unrolling late in the optimization pipeline (importantly, this
is after SLP and loop vectorization, as vectorization can drastically change
the size of a loop), while keeping the full unrolling where it is now. This
change does just that.

llvm-svn: 205264
2014-03-31 23:23:51 +00:00
Adam Nemet 10c4ce2584 [X86] Adjust cost of FP_TO_UINT v4f64->v4i32 as well
Pretty obvious follow-on to r205159 to also handle conversion from double
besides float.

Fixes <rdar://problem/16373208>

llvm-svn: 205253
2014-03-31 21:54:48 +00:00
Adam Nemet 6dafe97271 [X86] Adjust cost of FP_TO_UINT v8f32->v8i32
There is no direct AVX instruction to convert to unsigned.  I have some ideas
how we may be able to do this with three vector instructions but the current
backend just bails on this to get it scalarized.

See the comment why we need to adjust the cost returned by BasicTTI.

The test is a bit roundabout (and checks assembly rather than bit code) because
I'd like it to work even if at some point we could vectorize this conversion.

Fixes <rdar://problem/16371920>

llvm-svn: 205159
2014-03-30 18:07:13 +00:00
Tim Northover 00ed9964c6 ARM64: initial backend import
This adds a second implementation of the AArch64 architecture to LLVM,
accessible in parallel via the "arm64" triple. The plan over the
coming weeks & months is to merge the two into a single backend,
during which time thorough code review should naturally occur.

Everything will be easier with the target in-tree though, hence this
commit.

llvm-svn: 205090
2014-03-29 10:18:08 +00:00
Quentin Colombet 3914bf516b [X86][Vectorizer Cost Model] Correct vectorization cost model for v2i64->v2f64
and v4i64->v4f64.

The new costs match what we did for SSE2 and reflect the reality of our codegen.

<rdar://problem/16381225>

llvm-svn: 204884
2014-03-27 00:52:16 +00:00
Jim Grosbach 6373e70f81 add 'requires asserts' to test that needs it
llvm-svn: 204882
2014-03-27 00:20:42 +00:00
Jim Grosbach 72fbde84b8 X86: Correct vectorization cost model for v8f32->v8i8.
Fix the cost model to reflect the reality of our codegen.

rdar://16370633

llvm-svn: 204880
2014-03-27 00:04:11 +00:00
Arnold Schwaighofer ab12363c02 LoopVectorizer: Preserve fast-math flags
Fixes PR19045.

llvm-svn: 203008
2014-03-05 21:10:47 +00:00