Takes care of the assert that caused build fails.
Rather than asserting the code checks now that the definition
and use are in the same block, and does not attempt
to optimize when that is not the case.
llvm-svn: 219175
Joerg suggested on IRC that I look at generalizing the logic from r219067 to
handle more general redundancies (like removing an assume(x > 3) dominated by
an assume(x > 5)). The way to do this would be to ask ValueTracking to
determine the value of the i1 argument. It turns out that ValueTracking is not
very good at this right now (although it does get the trivial redundancy case)
because it does not understand ICmps. Nevertheless, the resulting code in
InstCombine is simpler than r219067, so we might as well do it now.
llvm-svn: 219070
For any @llvm.assume intrinsic, if there is another which dominates it and uses
the same condition, then it is redundant and can be removed. While this does
not alter the semantics of the @llvm.assume intrinsics, it makes subsequent
handling more efficient (and the resulting IR easier to read).
llvm-svn: 219067
When unsafe-fp-math is enabled, we can turn sqrt(X) * sqrt(X) into X.
This can happen in the real world when calculating x ** 3/2. This occurs
in test-suite/SingleSource/Benchmarks/BenchmarkGame/n-body.c.
Differential Revision: http://reviews.llvm.org/D5584
llvm-svn: 218906
The icmp-select-icmp optimization made the implicit assumption
that the select-icmp instructions are in the same block and asserted on it.
The fix explicitly checks for that condition and conservatively suppresses
the optimization when it is violated.
llvm-svn: 218735
In special cases select instructions can be eliminated by
replacing them with a cheaper bitwise operation even when the
select result is used outside its home block. The instances implemented
are patterns like
%x=icmp.eq
%y=select %x,%r, null
%z=icmp.eq|neq %y, null
br %z,true, false
==> %x=icmp.ne
%y=icmp.eq %r,null
%z=or %x,%y
br %z,true,false
The optimization is integrated into the instruction
combiner and performed only when all uses of the select result can
be replaced by the select operand proper. For this dominator information
is used and dominance is now a required analysis pass in the combiner.
The optimization itself is iterative. The critical step is to replace the
select result with the non-constant select operand. So the select becomes
local and the combiner iteratively works out simpler code pattern and
eventually eliminates the select.
rdar://17853760
llvm-svn: 218721
This type isn't owned polymorphically (as demonstrated by making the
dtor protected and everything still compiling) so just address the
warning by protecting the base dtor and making the derived class final.
llvm-svn: 217990
Example:
define i1 @foo(i32 %a) {
%shr = ashr i32 -9, %a
%cmp = icmp ne i32 %shr, -5
ret i1 %cmp
}
Before this fix, the instruction combiner wrongly thought that %shr
could have never been equal to -5. Therefore, %cmp was always folded to 'true'.
However, when %a is equal to 1, then %cmp evaluates to 'false'. Therefore,
in this example, it is not valid to fold %cmp to 'true'.
The problem was only affecting the case where the comparison was between
negative quantities where one of the quantities was obtained from arithmetic
shift of a negative constant.
This patch fixes the problem with the wrong folding (fixes PR20945).
With this patch, the 'icmp' from the example is now simplified to a
comparison between %a and 1. This still allows us to get rid of the arithmetic
shift (%shr).
llvm-svn: 217950
From a combination of @llvm.assume calls (and perhaps through other means, such
as range metadata), it is possible that all bits of a return value might be
known. Previously, InstCombine did not check for this (which is understandable
given assumptions of constant propagation), but means that we'd miss simple
cases where assumptions are involved.
llvm-svn: 217346
This builds on r217342, which added the infrastructure to compute known bits
using assumptions (@llvm.assume calls). That original commit added only a few
patterns (to catch common cases related to determining pointer alignment); this
change adds several other patterns for simple cases.
r217342 contained that, for assume(v & b = a), bits in the mask
that are known to be one, we can propagate known bits from the a to v. It also
had a known-bits transfer for assume(a = b). This patch adds:
assume(~(v & b) = a) : For those bits in the mask that are known to be one, we
can propagate inverted known bits from the a to v.
assume(v | b = a) : For those bits in b that are known to be zero, we can
propagate known bits from the a to v.
assume(~(v | b) = a): For those bits in b that are known to be zero, we can
propagate inverted known bits from the a to v.
assume(v ^ b = a) : For those bits in b that are known to be zero, we can
propagate known bits from the a to v. For those bits in
b that are known to be one, we can propagate inverted
known bits from the a to v.
assume(~(v ^ b) = a) : For those bits in b that are known to be zero, we can
propagate inverted known bits from the a to v. For those
bits in b that are known to be one, we can propagate
known bits from the a to v.
assume(v << c = a) : For those bits in a that are known, we can propagate them
to known bits in v shifted to the right by c.
assume(~(v << c) = a) : For those bits in a that are known, we can propagate
them inverted to known bits in v shifted to the right by c.
assume(v >> c = a) : For those bits in a that are known, we can propagate them
to known bits in v shifted to the right by c.
assume(~(v >> c) = a) : For those bits in a that are known, we can propagate
them inverted to known bits in v shifted to the right by c.
assume(v >=_s c) where c is non-negative: The sign bit of v is zero
assume(v >_s c) where c is at least -1: The sign bit of v is zero
assume(v <=_s c) where c is negative: The sign bit of v is one
assume(v <_s c) where c is non-positive: The sign bit of v is one
assume(v <=_u c): Transfer the known high zero bits
assume(v <_u c): Transfer the known high zero bits (if c is know to be a power
of 2, transfer one more)
A small addition to InstCombine was necessary for some of the test cases. The
problem is that when InstCombine was simplifying and, or, etc. it would fail to
check the 'do I know all of the bits' condition before checking less specific
conditions and would not fully constant-fold the result. I'm not sure how to
trigger this aside from using assumptions, so I've just included the change
here.
llvm-svn: 217343
This change, which allows @llvm.assume to be used from within computeKnownBits
(and other associated functions in ValueTracking), adds some (optional)
parameters to computeKnownBits and friends. These functions now (optionally)
take a "context" instruction pointer, an AssumptionTracker pointer, and also a
DomTree pointer, and most of the changes are just to pass this new information
when it is easily available from InstSimplify, InstCombine, etc.
As explained below, the significant conceptual change is that known properties
of a value might depend on the control-flow location of the use (because we
care that the @llvm.assume dominates the use because assumptions have
control-flow dependencies). This means that, when we ask if bits are known in a
value, we might get different answers for different uses.
The significant changes are all in ValueTracking. Two main changes: First, as
with the rest of the code, new parameters need to be passed around. To make
this easier, I grouped them into a structure, and I made internal static
versions of the relevant functions that take this structure as a parameter. The
new code does as you might expect, it looks for @llvm.assume calls that make
use of the value we're trying to learn something about (often indirectly),
attempts to pattern match that expression, and uses the result if successful.
By making use of the AssumptionTracker, the process of finding @llvm.assume
calls is not expensive.
Part of the structure being passed around inside ValueTracking is a set of
already-considered @llvm.assume calls. This is to prevent a query using, for
example, the assume(a == b), to recurse on itself. The context and DT params
are used to find applicable assumptions. An assumption needs to dominate the
context instruction, or come after it deterministically. In this latter case we
only handle the specific case where both the assumption and the context
instruction are in the same block, and we need to exclude assumptions from
being used to simplify their own ephemeral values (those which contribute only
to the assumption) because otherwise the assumption would prove its feeding
comparison trivial and would be removed.
This commit adds the plumbing and the logic for a simple masked-bit propagation
(just enough to write a regression test). Future commits add more patterns
(and, correspondingly, more regression tests).
llvm-svn: 217342
This adds an immutable pass, AssumptionTracker, which keeps a cache of
@llvm.assume call instructions within a module. It uses callback value handles
to keep stale functions and intrinsics out of the map, and it relies on any
code that creates new @llvm.assume calls to notify it of the new instructions.
The benefit is that code needing to find @llvm.assume intrinsics can do so
directly, without scanning the function, thus allowing the cost of @llvm.assume
handling to be negligible when none are present.
The current design is intended to be lightweight. We don't keep track of
anything until we need a list of assumptions in some function. The first time
this happens, we scan the function. After that, we add/remove @llvm.assume
calls from the cache in response to registration calls and ValueHandle
callbacks.
There are no new direct test cases for this pass, but because it calls it
validation function upon module finalization, we'll pick up detectable
inconsistencies from the other tests that touch @llvm.assume calls.
This pass will be used by follow-up commits that make use of @llvm.assume.
llvm-svn: 217334
The special case did not work when run under -reassociate and can easily
be expressed by a further generalization of an existing pattern.
llvm-svn: 217227
This reverts commit r216698 which reverted r216523 and r216598.
We would attempt to perform the transformation even if the match()
failed because, as a side effect, it would set V. This would trick us
into believing that we correctly found a place to correctly apply the
transform.
An additional test case was added to getelementptr.ll so that we might
not regress in the future.
llvm-svn: 216890
consider: (and (icmp X, Y), (and Z, (icmp A, B)))
It may be possible to combine (icmp X, Y) with (icmp A, B).
If we successfully combine, create an 'and' instruction with Z.
This fixes PR20814.
N.B. There is room for improvement after this change but I'm not
convinced it's worth chasing yet.
llvm-svn: 216814
InstSimplify already handles icmp (X+Y), X (and things like it)
appropriately. The first thing that InstCombine does is run
InstSimplify on the instruction.
llvm-svn: 216659
Several combines involving icmp (shl C2, %X) C1 can be simplified
without introducing any new instructions. Move them to InstSimplify;
while we are at it, make them more powerful.
llvm-svn: 216642
We try to perform this transform in InstSimplify but we aren't always
able to. Sometimes, we need to insert a bitcast if X and Y don't have
the same time.
llvm-svn: 216598
We supported transforming:
(gep i8* X, -(ptrtoint Y))
to:
(inttoptr (sub (ptrtoint X), (ptrtoint Y)))
However, this only fired if 'X' had type i8*. Generalize this to
support various types of different sizes. This results in much better
CodeGen, especially for pointers to packed structs.
llvm-svn: 216523
(X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
(X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
(X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
These patterns were previously handled separately in visitAnd()/visitOr()/visitXor().
Differential Revision: http://reviews.llvm.org/D4951
llvm-svn: 216443
CFE, with -03, would turn:
bool f(unsigned x) {
bool a = x & 1;
bool b = x & 2;
return a | b;
}
into:
%1 = lshr i32 %x, 1
%2 = or i32 %1, %x
%3 = and i32 %2, 1
%4 = icmp ne i32 %3, 0
This sort of thing exposes a nasty pathology in GCC, ICC and LLVM.
Instead, we would rather want:
%1 = and i32 %x, 3
%2 = icmp ne i32 %1, 0
Things get a bit more interesting in the following case:
%1 = lshr i32 %x, %y
%2 = or i32 %1, %x
%3 = and i32 %2, 1
%4 = icmp ne i32 %3, 0
Replacing it with the following sequence is better:
%1 = shl nuw i32 1, %y
%2 = or i32 %1, 1
%3 = and i32 %2, %x
%4 = icmp ne i32 %3, 0
This sequence is preferable because %1 doesn't involve %x and could
potentially be hoisted out of loops if it is invariant; only perform
this transform in the non-constant case if we know we won't increase
register pressure.
llvm-svn: 216343
Consider:
%add = add nuw i32 %a, -16777216
%and = and i32 %add, 255
Regardless of whether or not we demand the sign bit of %add, we cannot
replace -16777216 with 2130706432 without also removing 'nuw' from the
instruction.
llvm-svn: 216273
Consider:
%add = add nsw i32 %a, -16777216
%and = and i32 %add, 255
Regardless of whether or not we demand the sign bit of %add, we cannot
replace -16777216 with 2130706432 without also removing 'nsw' from the
instruction.
This fixes PR20377.
llvm-svn: 216261
We can prove that a 'sub' can be a 'sub nsw' under certain conditions:
- The sign bits of the operands is the same.
- Both operands have more than 1 sign bit.
The subtraction cannot be a signed overflow in either case.
llvm-svn: 216037
While this might seem like an obvious canonicalization, there is one subtle problem with it. The result of the original expression
is undef when x is NaN (remember, fast math flags), but the result of the select is always defined when x is NaN. This means that the
new expression is strictly more defined than the original one. One unfortunate consequence of this is that the transform is not reversible!
It's always legal to make increase the defined-ness of an expression, but it's not legal to reduce it. Thus, targets that prefer the original
form of the expression cannot reverse the transform to recover it. Another way to think of it is that the transform has lost source-level
information (the fast math flags), which is undesirable.
llvm-svn: 215825
While *most* (X sdiv 1) operations will get caught by InstSimplify, it
is still possible for a sdiv to appear in the worklist which hasn't been
simplified yet.
This means that it is possible for 0 - (X sdiv 1) to get transformed
into (X sdiv -1); dividing by -1 can make the transform produce undef
values instead of the proper result.
Sorry for the lack of testcase, it's a bit problematic because it relies
on the exact order of operations in the worklist.
llvm-svn: 215818
We can combne a mul with a div if one of the operands is a multiple of
the other:
%mul = mul nsw nuw %a, C1
%ret = udiv %mul, C2
=>
%ret = mul nsw %a, (C1 / C2)
This can expose further optimization opportunities if we end up
multiplying or dividing by a power of 2.
Consider this small example:
define i32 @f(i32 %a) {
%mul = mul nuw i32 %a, 14
%div = udiv exact i32 %mul, 7
ret i32 %div
}
which gets CodeGen'd to:
imull $14, %edi, %eax
imulq $613566757, %rax, %rcx
shrq $32, %rcx
subl %ecx, %eax
shrl %eax
addl %ecx, %eax
shrl $2, %eax
retq
We can now transform this into:
define i32 @f(i32 %a) {
%shl = shl nuw i32 %a, 1
ret i32 %shl
}
which gets CodeGen'd to:
leal (%rdi,%rdi), %eax
retq
This fixes PR20681.
llvm-svn: 215815
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
Correctness proof of the transform using CVC3-
$ cat t.cvc
A, B : BITVECTOR(32);
QUERY BVXOR(A | B, BVXOR(A,B) ) = A & B;
$ cvc3 t.cvc
Valid.
llvm-svn: 215524
What follows bellow is a correctness proof of the transform using CVC3.
$ < t.cvc
A, B : BITVECTOR(32);
QUERY BVPLUS(32, A & B, A | B) = BVPLUS(32, A, B);
$ cvc3 < t.cvc
Valid.
llvm-svn: 215400
We can only propagate the nsw bits if both subtraction instructions are
marked with the appropriate bit.
N.B. We only propagate the nsw bit in InstCombine because the nuw case
is already handled in InstSimplify.
This fixes PR20189.
llvm-svn: 214385
While we can already transform A | (A ^ B) into A | B, things get bad
once we have (A ^ B) | (A ^ B ^ Cst) because reassociation will morph
this into (A ^ B) | ((A ^ Cst) ^ B). Our existing patterns fail once
this happens.
To fix this, we add a new pattern which looks through the tree of xor
binary operators to see that, in fact, there exists a redundant xor
operation.
What follows bellow is a correctness proof of the transform using CVC3.
$ cat t.cvc
A, B, C : BITVECTOR(64);
QUERY BVXOR(A, B) | BVXOR(BVXOR(B, C), A) = BVXOR(A, B) | C;
QUERY BVXOR(BVXOR(A, C), B) | BVXOR(A, B) = BVXOR(A, B) | C;
QUERY BVXOR(A, B) & BVXOR(BVXOR(B, C), A) = BVXOR(A, B) & ~C;
QUERY BVXOR(BVXOR(A, C), B) & BVXOR(A, B) = BVXOR(A, B) & ~C;
$ cvc3 < t.cvc
Valid.
Valid.
Valid.
Valid.
llvm-svn: 214342
In order to enable the preservation of noalias function parameter information
after inlining, and the representation of block-level __restrict__ pointer
information (etc.), additional kinds of aliasing metadata will be introduced.
This metadata needs to be carried around in AliasAnalysis::Location objects
(and MMOs at the SDAG level), and so we need to generalize the current scheme
(which is hard-coded to just one TBAA MDNode*).
This commit introduces only the necessary refactoring to allow for the
introduction of other aliasing metadata types, but does not actually introduce
any (that will come in a follow-up commit). What it does introduce is a new
AAMDNodes structure to hold all of the aliasing metadata nodes associated with
a particular memory-accessing instruction, and uses that structure instead of
the raw MDNode* in AliasAnalysis::Location, etc.
No functionality change intended.
llvm-svn: 213859
It handles the errors which were seen in PR19958 where wrong code was being emitted due to earlier patch.
Added code for lshr as well as non-exact right shifts.
It implements :
(icmp eq/ne (ashr/lshr const2, A), const1)" ->
(icmp eq/ne A, Log2(const2/const1)) ->
(icmp eq/ne A, Log2(const2) - Log2(const1))
Differential Revision: http://reviews.llvm.org/D4068
llvm-svn: 213678
"((~A & B) | A) -> (A | B)" and "((A & B) | ~A) -> (~A | B)"
Original Patch credit to Ankit Jain !!
Differential Revision: http://reviews.llvm.org/D4591
llvm-svn: 213676
Summary: This patch introduces two new iterator ranges and updates existing code to use it. No functional change intended.
Test Plan: All tests (make check-all) still pass.
Reviewers: dblaikie
Reviewed By: dblaikie
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D4481
llvm-svn: 213474
Refactor code, no functionality change, test case moved from instcombine to instsimplify.
Differential Revision: http://reviews.llvm.org/D4102
llvm-svn: 213231
In the original version of the patch the behaviour was like described in
the comment. This behaviour was changed before committing it without
updating the comment.
llvm-svn: 213117
Fix a crash in `InstCombiner::Descale()` when a multiply-by-zero gets
created as an argument to a GEP partway through an iteration, causing
-instcombine to optimize the GEP before the multiply.
rdar://problem/17615671
llvm-svn: 212742
isSafeToSpeculativelyExecute can optionally take a DataLayout pointer. In the
past, this was mainly used to make better decisions regarding divisions known
not to trap, and so was not all that important for users concerned with "cheap"
instructions. However, now it also helps look through bitcasts for
dereferencable loads, and will also be important if/when we add a
dereferencable pointer attribute.
This is some initial work to feed a DataLayout pointer through to callers of
isSafeToSpeculativelyExecute, generally where one was already available.
llvm-svn: 212720
In PR20059 ( http://llvm.org/pr20059 ), instcombine eliminates shuffles that are necessary before performing an operation that can trap (srem).
This patch calls isSafeToSpeculativelyExecute() and bails out of the optimization in SimplifyVectorOp() if needed.
Differential Revision: http://reviews.llvm.org/D4424
llvm-svn: 212629
This patch reduces the stack memory consumption of the InstCombine
function "isOnlyCopiedFromConstantGlobal() ", that in certain conditions
could overflow the stack because of excessive recursiveness.
For example, in a case like this:
%0 = alloca [50025 x i32], align 4
%1 = getelementptr inbounds [50025 x i32]* %0, i64 0, i64 0
store i32 0, i32* %1
%2 = getelementptr inbounds i32* %1, i64 1
store i32 1, i32* %2
%3 = getelementptr inbounds i32* %2, i64 1
store i32 2, i32* %3
%4 = getelementptr inbounds i32* %3, i64 1
store i32 3, i32* %4
%5 = getelementptr inbounds i32* %4, i64 1
store i32 4, i32* %5
%6 = getelementptr inbounds i32* %5, i64 1
store i32 5, i32* %6
...
This piece of code crashes llvm when trying to apply instcombine on
desktop. On embedded devices this could happen with a much lower limit
of recursiveness. Some instructions (getelementptr and bitcasts) make
the function recursively call itself on their uses, which is what makes
the example above consume so much stack (it becomes a recursive
depth-first tree visit with a very big depth).
The patch changes the algorithm to be semantically equivalent, but
iterative instead of recursive and the visiting order to be from a
depth-first visit to a breadth-first visit (visit all the instructions
of the current level before the ones of the next one).
Now if a lot of memory is required a heap allocation is done instead of
the the stack allocation, avoiding the possible crash.
Reviewed By: rnk
Differential Revision: http://reviews.llvm.org/D4355
Patch by Marcello Maggioni! We don't generally commit large stress test
that look for out of memory conditions, so I didn't request that one be
added to the patch.
llvm-svn: 212133
This patch enables transforms for
(x + (~(y | c) + 1) --> x - (y | c) if c is odd
Differential Revision: http://reviews.llvm.org/D4210
llvm-svn: 211881
This patch enables transforms for
(x + (~(y | c) + 1) --> x - (y | c) if c is even
Differential Revision: http://reviews.llvm.org/D4209
llvm-svn: 211765
This patch enables transforms for following patterns.
(x + (~(y & c) + 1) --> x - (y & c)
(x + (~((y >> z) & c) + 1) --> x - ((y>>z) & c)
Differential Revision: http://reviews.llvm.org/D3733
llvm-svn: 211266
* Find factorization opportunities using identity values.
* Find factorization opportunities by treating shl(X, C) as mul (X, shl(C))
* Keep NSW flag while simplifying instruction using factorization.
This fixes PR19263.
Differential Revision: http://reviews.llvm.org/D3799
llvm-svn: 211261
InstCombineMulDivRem has:
// Canonicalize (X+C1)*CI -> X*CI+C1*CI.
InstCombineAddSub has:
// W*X + Y*Z --> W * (X+Z) iff W == Y
These two transforms could fight with each other if C1*CI would not fold
away to something simpler than a ConstantExpr mul.
The InstCombineMulDivRem transform only acted on ConstantInts until
r199602 when it was changed to operate on all Constants in order to
let it fire on ConstantVectors.
To fix this, make this transform more careful by checking to see if we
actually folded away C1*CI.
This fixes PR20079.
llvm-svn: 211258
These will be used for custom lowering and for library
implementations of various math functions, so it's useful
to expose these as builtins.
llvm-svn: 211247
Summary:
As a starting step, we only use one simple heuristic: if the sign bits
of both a and b are zero, we can prove "add a, b" do not unsigned
overflow, and thus convert it to "add nuw a, b".
Updated all affected tests and added two new tests (@zero_sign_bit and
@zero_sign_bit2) in AddOverflow.ll
Test Plan: make check-all
Reviewers: eliben, rafael, meheff, chandlerc
Reviewed By: chandlerc
Subscribers: chandlerc, llvm-commits
Differential Revision: http://reviews.llvm.org/D4144
llvm-svn: 211084
As a follow-up to r210375 which canonicalizes addrspacecast
instructions, this patch canonicalizes addrspacecast constant
expressions.
Given clang uses ConstantExpr::getAddrSpaceCast to emit addrspacecast
cosntant expressions, this patch is also a step towards having the
frontend emit canonicalized addrspacecasts.
Piggyback a minor refactor in InstCombineCasts.cpp
Update three affected tests in addrspacecast-alias.ll,
access-non-generic.ll and constant-fold-gep.ll and added one new test in
constant-fold-address-space-pointer.ll
llvm-svn: 211004
The messages were
"PR19753: Optimize comparisons with "ashr exact" of a constanst."
"Added support to optimize comparisons with "lshr exact" of a constant."
They were not correctly handling signed/unsigned operation differences,
causing pr19958.
llvm-svn: 210393
addrspacecast X addrspace(M)* to Y addrspace(N)*
-->
bitcast X addrspace(M)* to Y addrspace(M)*
addrspacecast Y addrspace(M)* to Y addrspace(N)*
Updat all affected tests and add several new tests in addrspacecast.ll.
This patch is based on http://reviews.llvm.org/D2186 (authored by Matt
Arsenault) with fixes and more tests.
llvm-svn: 210375
As discussed in cfe commit r210279, the correct little-endian
semantics for the vec_perm Altivec interfaces are implemented by
reversing the order of the input vectors and complementing the permute
control vector. This converts the desired permute from little endian
element order into the big endian element order that the underlying
PowerPC vperm instruction uses. This is represented with a
ppc_altivec_vperm intrinsic function.
The instruction combining pass contains code to convert a
ppc_altivec_vperm intrinsic into a vector shuffle operation when the
intrinsic has a permute control vector (mask) that is a constant.
However, the vector shuffle operation assumes that vector elements are
in natural order for their endianness, so for little endian code we
will get the wrong result with the existing transformation.
This patch reverses the semantic change to vec_perm that was performed
in altivec.h by once again swapping the input operands and
complementing the permute control vector, returning the element
ordering to little endian.
The correctness of this code is tested by the new perm.c test added in
a previous patch, and by other tests in the test suite that fail
without this patch.
llvm-svn: 210282
This patch implements two things:
1. If we know one number is positive and another is negative, we return true as
signed addition of two opposite signed numbers will never overflow.
2. Implemented TODO : If one of the operands only has one non-zero bit, and if
the other operand has a known-zero bit in a more significant place than it
(not including the sign bit) the ripple may go up to and fill the zero, but
won't change the sign. e.x - (x & ~4) + 1
We make sure that we are ignoring 0 at MSB.
Patch by Suyog Sarda.
llvm-svn: 210186
The code was actually correct. Sorry for the confusion. I have expanded the
comment saying why the analysis is valid to avoid me misunderstaning it
again in the future.
llvm-svn: 210052
if ((x & C) == 0) x |= C becomes x |= C
if ((x & C) != 0) x ^= C becomes x &= ~C
if ((x & C) == 0) x ^= C becomes x |= C
if ((x & C) != 0) x &= ~C becomes x &= ~C
if ((x & C) == 0) x &= ~C becomes nothing
Differential Revision: http://reviews.llvm.org/D3777
llvm-svn: 210006
original fix would actually trigger the *exact* same crasher as the
original bug for a different reason. Awesomesauce.
Working on test cases now, but wanted to get bots healthier.
llvm-svn: 209860
across PHI nodes. The code was computing the Idxs from the 'GEP'
variable's indices when what it wanted was Op1's indices. This caused an
ASan heap-overflow for me that pin pointed the issue when Op1 had more
indices than GEP did. =] I'll let Louis add a specific test case for
this if he wants.
llvm-svn: 209857
Currently LLVM will generally merge GEPs. This allows backends to use more
complex addressing modes. In some cases this is not happening because there
is PHI inbetween the two GEPs:
GEP1--\
|-->PHI1-->GEP3
GEP2--/
This patch checks to see if GEP1 and GEP2 are similiar enough that they can be
cloned (GEP12) in GEP3's BB, allowing GEP->GEP merging (GEP123):
GEP1--\ --\ --\
|-->PHI1-->GEP3 ==> |-->PHI2->GEP12->GEP3 == > |-->PHI2->GEP123
GEP2--/ --/ --/
This also breaks certain use chains that are preventing GEP->GEP merges that the
the existing instcombine would merge otherwise.
Tests included.
llvm-svn: 209843
Currently LLVM will generally merge GEPs. This allows backends to use more
complex addressing modes. In some cases this is not happening because there
is PHI inbetween the two GEPs:
GEP1--\
|-->PHI1-->GEP3
GEP2--/
This patch checks to see if GEP1 and GEP2 are similiar enough that they can be
cloned (GEP12) in GEP3's BB, allowing GEP->GEP merging (GEP123):
GEP1--\ --\ --\
|-->PHI1-->GEP3 ==> |-->PHI2->GEP12->GEP3 == > |-->PHI2->GEP123
GEP2--/ --/ --/
This also breaks certain use chains that are preventing GEP->GEP merges that the
the existing instcombine would merge otherwise.
Tests included.
llvm-svn: 209755
This patch implements two things:
1. If we know one number is positive and another is negative, we return true as
signed addition of two opposite signed numbers will never overflow.
2. Implemented TODO : If one of the operands only has one non-zero bit, and if
the other operand has a known-zero bit in a more significant place than it
(not including the sign bit) the ripple may go up to and fill the zero, but
won't change the sign. e.x - (x & ~4) + 1
We make sure that we are ignoring 0 at MSB.
Patch by Suyog Sarda.
llvm-svn: 209746
Detected by Daniel Jasper, Ilia Filippov, and Andrea Di Biagio
Fixed the argument order to select (the mask semantics to blendv* are the
inverse of select) and fixed the tests
Added parenthesis to the assert condition
Ran clang-format
llvm-svn: 209667
Summary:
Implemented an InstCombine transformation that takes a blendv* intrinsic
call and translates it into an IR select, if the mask is constant.
This will eventually get lowered into blends with immediates if possible,
or pblendvb (with an option to further optimize if we can transform the
pblendvb into a blend+immediate instruction, depending on the selector).
It will also enable optimizations by the IR passes, which give up on
sight of the intrinsic.
Both the transformation and the lowering of its result to asm got shiny
new tests.
The transformation is a bit convoluted because of blendvp[sd]'s
definition:
Its mask is a floating point value! This forces us to convert it and get
the highest bit. I suppose this happened because the mask has type
__m128 in Intel's intrinsic and v4sf (for blendps) in gcc's builtin.
I will send an email to llvm-dev to discuss if we want to change this or
not.
Reviewers: grosbach, delena, nadav
Differential Revision: http://reviews.llvm.org/D3859
llvm-svn: 209643
This commit starts with a "git mv ARM64 AArch64" and continues out
from there, renaming the C++ classes, intrinsics, and other
target-local objects for consistency.
"ARM64" test directories are also moved, and tests that began their
life in ARM64 use an arm64 triple, those from AArch64 use an aarch64
triple. Both should be equivalent though.
This finishes the AArch64 merge, and everyone should feel free to
continue committing as normal now.
llvm-svn: 209577
This patch fixes 3 issues introduced by r209049 that only showed up in on
the sanitizer buildbots. One was a typo in a compare. The other is a check to
confirm that the single differing value in the two incoming GEPs is the same
type. The final issue was the the IRBuilder under some circumstances would
build PHIs in the middle of the block.
llvm-svn: 209065
Currently LLVM will generally merge GEPs. This allows backends to use more
complex addressing modes. In some cases this is not happening because there
is PHI inbetween the two GEPs:
GEP1--\
|-->PHI1-->GEP3
GEP2--/
This patch checks to see if GEP1 and GEP2 are similiar enough that they can be
cloned (GEP12) in GEP3's BB, allowing GEP->GEP merging (GEP123):
GEP1--\ --\ --\
|-->PHI1-->GEP3 ==> |-->PHI2->GEP12->GEP3 == > |-->PHI2->GEP123
GEP2--/ --/ --/
This also breaks certain use chains that are preventing GEP->GEP merges that the
the existing instcombine would merge otherwise.
Tests included.
rdar://15547484
llvm-svn: 209049
if ((x & C) == 0) x |= C becomes x |= C
if ((x & C) != 0) x ^= C becomes x &= ~C
if ((x & C) == 0) x ^= C becomes x |= C
if ((x & C) != 0) x &= ~C becomes x &= ~C
if ((x & C) == 0) x &= ~C becomes nothing
Z3 Verifications code for above transform
http://rise4fun.com/Z3/Pmsh
Differential Revision: http://reviews.llvm.org/D3717
llvm-svn: 208848
Summary:
This gets rid of a sub instruction by moving the negation to the
constant when valid.
Reviewers: nicholas
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3773
llvm-svn: 208827
In transformation:
BinOp(shuffle(v1,undef), shuffle(v2,undef)) -> shuffle(BinOp(v1, v2),undef)
type of the undef argument must be same as type of BinOp.
llvm-svn: 208531
Do not apply transformation:
BinOp(shuffle(v1), shuffle(v2)) -> shuffle(BinOp(v1, v2))
if operands v1 and v2 are of different size.
This change fixes PR19717, which was caused by r208488.
llvm-svn: 208518
This patch enables transformations:
BinOp(shuffle(v1), shuffle(v2)) -> shuffle(BinOp(v1, v2))
BinOp(shuffle(v1), const1) -> shuffle(BinOp, const2)
They allow to eliminate extra shuffles in some cases.
Differential Revision: http://reviews.llvm.org/D3525
llvm-svn: 208488
The instcomine logic to handle vpermilvar's pd and 256 variants was incorrect.
The _256 variants have indexes into the individual 128 bit lanes and in all
cases it also has to mask out unused bits.
llvm-svn: 207577
right intrinsics.
A packed logical shift right with a shift count bigger than or equal to the
element size always produces a zero vector. In all other cases, it can be
safely replaced by a 'lshr' instruction.
llvm-svn: 207299
This excludes avx512 as I don't have hardware to verify. It excludes _dq
variants because they are represented in the IR as <{2,4} x i64> when it's
actually a byte shift of the entire i{128,265}.
This also excludes _dq_bs as they aren't at all supported by the backend.
There are also no corresponding instructions in the ISA. I have no idea why
they exist...
llvm-svn: 207058
Summary:
Since the upper 64 bits of the destination register are undefined when
performing this operation, we can substitute it and let the optimizer
figure out that only a copy is needed.
Also added range merging, if an instruction copies a range that can be
merged with a previous copied range.
Added test cases for both optimizations.
Reviewers: grosbach, nadav
CC: llvm-commits
Differential Revision: http://reviews.llvm.org/D3357
llvm-svn: 207055
Don't replace shifts greater than the type with the maximum shift.
This isn't hit anywhere in the tests, and somewhere else is replacing
these with undef.
llvm-svn: 207000
definition below all of the header #include lines, lib/Transforms/...
edition.
This one is tricky for two reasons. We again have a couple of passes
that define something else before the includes as well. I've sunk their
name macros with the DEBUG_TYPE.
Also, InstCombine contains headers that need DEBUG_TYPE, so now those
headers #define and #undef DEBUG_TYPE around their code, leaving them
well formed modular headers. Fixing these headers was a large motivation
for all of these changes, as "leaky" macros of this form are hard on the
modules implementation.
llvm-svn: 206844
With a constant mask a vpermil* is just a shufflevector. This patch implements
that simplification. This allows us to produce denser code. It should also
allow more folding down the line.
llvm-svn: 206801
header files and into the cpp files.
These files will require more touches as the header files actually use
DEBUG(). Eventually, I'll have to introduce a matched #define and #undef
of DEBUG_TYPE for the header files, but that comes as step N of many to
clean all of this up.
llvm-svn: 206777
If multiplication involves zero-extended arguments and the result is
compared as in the patterns:
%mul32 = trunc i64 %mul64 to i32
%zext = zext i32 %mul32 to i64
%overflow = icmp ne i64 %mul64, %zext
or
%overflow = icmp ugt i64 %mul64 , 0xffffffff
then the multiplication may be replaced by call to umul.with.overflow.
This change fixes PR4917 and PR4918.
Differential Revision: http://llvm-reviews.chandlerc.com/D2814
llvm-svn: 206137
This adds a second implementation of the AArch64 architecture to LLVM,
accessible in parallel via the "arm64" triple. The plan over the
coming weeks & months is to merge the two into a single backend,
during which time thorough code review should naturally occur.
Everything will be easier with the target in-tree though, hence this
commit.
llvm-svn: 205090
This reverts commit r204912, and follow-up commit r204948.
This introduced a performance regression, and the fix is not completely
clear yet.
llvm-svn: 205010
Fixes a miscompile introduced in r204912. It would miscompile code like
(unsigned)(a + -49) <= 5U. The transform would turn this into
(unsigned)a < 55U, which would return true for values in [0, 49], when
it should not.
llvm-svn: 204948
Summary:
Previously the code didn't check if the before and after types for the
store were pointers to different address spaces. This resulted in
instcombine using a bitcast to convert between pointers to different
address spaces, causing an assertion due to the invalid cast.
It is not be appropriate to use addrspacecast this case because it is
not guaranteed to be a no-op cast. Instead bail out and do not do the
transformation.
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3117
llvm-svn: 204733
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
llvm-svn: 203364
Sequences of insertelement/extractelements are sometimes used to build
vectorsr; this code tries to put them back together into shuffles, but
could only produce a completely uniform shuffle types (<N x T> from two
<N x T> sources).
This should allow shuffles with different numbers of elements on the
input and output sides as well.
llvm-svn: 203229
a bit surprising, as the class is almost entirely abstracted away from
any particular IR, however it encodes the comparsion predicates which
mutate ranges as ICmp predicate codes. This is reasonable as they're
used for both instructions and constants. Thus, it belongs in the IR
library with instructions and constants.
llvm-svn: 202838
this would have been required because of the use of DataLayout, but that
has moved into the IR proper. It is still required because this folder
uses the constant folding in the analysis library (which uses the
datalayout) as the more aggressive basis of its folder.
llvm-svn: 202832
Move the test for this class into the IR unittests as well.
This uncovers that ValueMap too is in the IR library. Ironically, the
unittest for ValueMap is useless in the Support library (honestly, so
was the ValueHandle test) and so it already lives in the IR unittests.
Mmmm, tasty layering.
llvm-svn: 202821
name might indicate, it is an iterator over the types in an instruction
in the IR.... You see where this is going.
Another step of modularizing the support library.
llvm-svn: 202815
I am really sorry for the noise, but the current state where some parts of the
code use TD (from the old name: TargetData) and other parts use DL makes it
hard to write a patch that changes where those variables come from and how
they are passed along.
llvm-svn: 201827
logical operations on the i1's driving them. This is a bad idea for every
target I can think of (confirmed with micro tests on all of: x86-64, ARM,
AArch64, Mips, and PowerPC) because it forces the i1 to be materialized into
a general purpose register, whereas consuming it directly into a select generally
allows it to exist only transiently in a predicate or flags register.
Chandler ran a set of performance tests with this change, and reported no
measurable change on x86-64.
llvm-svn: 201275
Ideally only those transform passes that run at -O0 remain enabled,
in reality we get as close as we reasonably can.
Passes are responsible for disabling themselves, it's not the job of
the pass manager to do it for them.
llvm-svn: 200892
Summary:
I searched Transforms/ and Analysis/ for 'ByVal' and updated those call
sites to check for inalloca if appropriate.
I added tests for any change that would allow an optimization to fire on
inalloca.
Reviewers: nlewycky
Differential Revision: http://llvm-reviews.chandlerc.com/D2449
llvm-svn: 200281
This logic hadn't been updated to handle FastMathFlags, and it took me a while to detect it because it doesn't show up in a simple search for CreateFAdd.
llvm-svn: 199629
This change fixes the case of arithmetic shift right - do not attempt to fold that case.
This change also relaxes the conditions when attempting to fold the logical shift right and shift left cases.
No additional IR-level test cases included at this time. See http://llvm.org/bugs/show_bug.cgi?id=17827 for proofs that these are correct transformations.
llvm-svn: 197705
InstCombine, in visitFPTrunc, applies the following optimization to sqrt calls:
(fptrunc (sqrt (fpext x))) -> (sqrtf x)
but does not apply the same optimization to llvm.sqrt. This is a problem
because, to enable vectorization, Clang generates llvm.sqrt instead of sqrt in
fast-math mode, and because this optimization is being applied to sqrt and not
applied to llvm.sqrt, sometimes the fast-math code is slower.
This change makes InstCombine apply this optimization to llvm.sqrt as well.
This fixes the specific problem in PR17758, although the same underlying issue
(optimizations applied to libcalls are not applied to intrinsics) exists for
other optimizations in SimplifyLibCalls.
llvm-svn: 194935
When the elements are extracted from a select on vectors
or a vector select, do the select on the extracted scalars
from the input if there is only one use.
llvm-svn: 194013
when it was actually a Constant*.
There are quite a few other casts to Instruction that might have the same problem,
but this is the only one I have a test case for.
llvm-svn: 191668
Currently foldSelectICmpAndOr asserts if the "or" involves a vector
containing several of the same power of two. We can easily avoid this by
only performing the fold on integer types, like foldSelectICmpAnd does.
Fixes <rdar://problem/15012516>
llvm-svn: 191552
The GEP pattern is what SCEV expander emits for "ugly geps". The latter is what
you get for pointer subtraction in C code. The rest of instcombine already
knows how to deal with that so just canonicalize on that.
llvm-svn: 191090
If "C1/X" were having multiple uses, the only benefit of this
transformation is to potentially shorten critical path. But it is at the
cost of instroducing additional div.
The additional div may or may not incur cost depending on how div is
implemented. If it is implemented using Newton–Raphson iteration, it dosen't
seem to incur any cost (FIXME). However, if the div blocks the entire
pipeline, that sounds to be pretty expensive. Let CodeGen to take care
this transformation.
This patch sees 6% on a benchmark.
rdar://15032743
llvm-svn: 191037
Some of this code is no longer necessary since int<->ptr casts are no
longer occur as of r187444.
This also fixes handling vectors of pointers, and adds a bunch of new
testcases for vectors and address spaces.
llvm-svn: 190885
other in memory.
The motivation was to get rid of truncate and shift right instructions that get
in the way of paired load or floating point load.
E.g.,
Consider the following example:
struct Complex {
float real;
float imm;
};
When accessing a complex, llvm was generating a 64-bits load and the imm field
was obtained by a trunc(lshr) sequence, resulting in poor code generation, at
least for x86.
The idea is to declare that two load instructions is the canonical form for
loading two arithmetic type, which are next to each other in memory.
Two scalar loads at a constant offset from each other are pretty
easy to detect for the sorts of passes that like to mess with loads.
<rdar://problem/14477220>
llvm-svn: 190870
Several architectures use the same instruction to perform both a comparison and
a subtract. The instruction selection framework does not allow to consider
different basic blocks to expose such fusion opportunities.
Therefore, these instructions are “merged” by CSE at MI IR level.
To increase the likelihood of CSE to apply in such situation, we reorder the
operands of the comparison, when they have the same complexity, so that they
matches the order of the most frequent subtract.
E.g.,
icmp A, B
...
sub B, A
<rdar://problem/14514580>
llvm-svn: 190352
"(icmp op i8 A, B)" is equivalent to "(icmp op i8 (A & 0xff), B)" as a
degenerate case. Allowing this as a "masked" comparison when analysing "(icmp)
&/| (icmp)" allows us to combine them in more cases.
rdar://problem/7625728
llvm-svn: 189931
Even in cases which aren't universally optimisable like "(A & B) != 0 && (A &
C) != 0", the masks can make one of the comparisons completely redundant. In
this case, since we've gone to the effort of spotting masked comparisons we
should combine them.
rdar://problem/7625728
llvm-svn: 189930
PR17026. Also avoid undefined shifts and shift amounts larger than 64 bits
(those are always undef because we can't represent integer types that large).
llvm-svn: 189672