parts of Clang. I don't really have any opinion about whether using that
macro is good or bad, but its odd that this is the only one, and Eric
seemed happy with just nuking it for now.
llvm-svn: 206806
specializations collect all arguments and not just the ones from the
class template partial specialization from which this class template
specialization was instantiated. The debug info does not represent the
partial specialization otherwise and so specialized parameters would
go missing.
rdar://problem/16636569.
llvm-svn: 206430
are not associated with any source lines.
Previously, if the Location of a Decl was empty, EmitFunctionStart would
just keep using CurLoc, which would sometimes be correct (e.g., thunks)
but in other cases would just point to a hilariously random location.
This patch fixes this by completely eliminating all uses of CurLoc from
EmitFunctionStart and rather have clients explicitly pass in a
SourceLocation for the function header and the function body.
rdar://problem/14985269
llvm-svn: 205999
sure that a debugger can find them when stepping through code,
for example from the included testcase:
12 int test_it() {
13 c = 1;
14 d = 2;
-> 15 a = 4;
16 return (c == 1);
17 }
18
(lldb) p a
(int) $0 = 2
(lldb) p c
(int) $1 = 2
(lldb) p d
(int) $2 = 2
and a, c, d are all part of the file static anonymous union:
static union {
int c;
int d;
union {
int a;
};
struct {
int b;
};
};
Fixes PR19221.
llvm-svn: 205952
We already got the type alias correct (though I've included a test case
here) since Clang represents that like any other typedef - but type
alias templates weren't being handled.
llvm-svn: 205691
While the folding set would deduplicate the nodes themselves and LLVM
would handle not emitting the same global twice, it still meant creating
a long/redundant list of global variables.
llvm-svn: 205668
See the comment for CodeGenFunction::tryEmitAsConstant that describes
how in some contexts (lambdas) we must not emit references to the
variable, but instead use the constant directly - because of this we end
up emitting a constant for the variable, as well as emitting the
variable itself.
Should we just skip putting the variable on the stack at all and omit
the debug info for the constant? It's not clear to me - what if the
address of the local is taken?
llvm-svn: 205651
This was committed 4 years ago in 108916 with insufficient testing to
explain why the "getTypeAsWritten" case was appropriate. Experience says
that it isn't - the presence or absence of an explicit instantiation
declaration was causing this code to generate either i<int> or i<int,
int>.
That didn't seem to be a useful distinction, and omitting the template
arguments was destructive to debuggers being able to associate the two
types across translation units or across compilers (GCC, reasonably,
never omitted the arguments).
llvm-svn: 205447
We don't want to encourage the code to emit a lexical block for
a function that needs one in order for the line table to change,
we need to grab the line information from the body of the pattern
that we were instantiated from, this code should do that.
Modify the test case to ensure that we're still looking in the
right place for all of the scopes and also that we haven't
created a lexical block where we didn't need one.
llvm-svn: 205368
instead of rolling an inefficient version of the function. This
changes some order of emission of metadata nodes, fix up those
testcases and make them more flexible to some changes.
llvm-svn: 204874
location that the next call emitLocation() would default to. Otherwise
setLocation() may wrongly believe that the current source file didn't
change, when in fact it did.
llvm-svn: 204517
This fails an "isa<> used with null pointer" assert during a clang-cl
self-host on Windows. This was caused by r202769, and I'm currently
reducing a test case.
Reviewers: dblaikie
Differential Revision: http://llvm-reviews.chandlerc.com/D2944
llvm-svn: 202888
We should only have this optimization fire when the explicit
instantiation definition would cause at least one member function to be
emitted, thus ensuring that even a compiler not performing this
optimization would still emit the full type information elsewhere.
But we should also pessimize output still by always emitting the
definition when the explicit instantiation definition appears so that at
some point in the future we can depend on that information even when no
code had to be emitted in that TU. (this shouldn't happen very often,
since people mostly use explicit spec decl/defs to reduce code size -
but perhaps one day they could use it to explicitly reduce debug info
size too)
This was worth about 2% for Clang and LLVM - so not a huge win, but a
win. It looks really great for simple STL programs (include <string> and
just declare a string - 14k -> 1.4k of .dwo)
llvm-svn: 202769
A return type is the declared or deduced part of the function type specified in
the declaration.
A result type is the (potentially adjusted) type of the value of an expression
that calls the function.
Rule of thumb:
* Declarations have return types and parameters.
* Expressions have result types and arguments.
llvm-svn: 200082
of the current compilation unit.
As a side effect this enables many more LTO uniquing opportunities.
This reapplies r199757 with a better testcase.
llvm-svn: 199760
Fix a perennial source of confusion in the clang type system: Declarations and
function prototypes have parameters to which arguments are supplied, so calling
these 'arguments' was a stretch even in C mode, let alone C++ where default
arguments, templates and overloading make the distinction important to get
right.
Readability win across the board, especially in the casting, ADL and
overloading implementations which make a lot more sense at a glance now.
Will keep an eye on the builders and update dependent projects shortly.
No functional change.
llvm-svn: 199686
class and use it pervasively to restore debug locations.
Fixes an interaction between cleanup and EH that caused the location
to not be restored properly after emitting a landing pad.
rdar://problem/15208190
llvm-svn: 199444