On MachO, sections also have segment names. When a tool looking at a .o file
prints a segment name, this is what they mean. In reality, a .o has only one
anonymous, segment.
This patch adds a MachO only function to fetch that segment name. I named it
getSectionFinalSegmentName since the main use for the name seems to be inform
the linker with segment this section should go to.
The patch also changes MachOObjectFile::getSectionName to return just the
section name instead of computing SegmentName,SectionName.
The main difference from the previous patch is that it doesn't use
InMemoryStruct. It is extremely dangerous: if the endians match it returns
a pointer to the file buffer, if not, it returns a pointer to an internal buffer
that is overwritten in the next API call.
We should change all of this code to use
support::detail::packed_endian_specific_integral like ELF, but since these
functions only handle strings, they work with big and little endian machines
as is.
I have tested this by installing ubuntu 12.10 ppc on qemu, that is why it took
so long :-)
llvm-svn: 170838
When we are visiting the extern declaration of 'i' in
static int i = 99;
int foo() {
extern int i;
return i;
}
We should not try to handle it as if it was an function static. That is, we
must consider the written storage class.
Fixing this then exposes that the assert in EmitGlobalVarDeclLValue and the
if leading to its call are not completely accurate. They were passing before
because the second decl was marked as having external storage. I changed them
to check the linkage, which I find easier to understand.
Last but not least, there is something strange going on with cuda and opencl.
My guess is that the linkage computation for these languages needs to be
audited, but I didn't want to change that in this patch so I just updated
the storage classes to keep the current behavior.
Thanks to Reed Kotler for reporting this.
llvm-svn: 170827
Modify the call graph by removing the parentless nodes. Instead all
nodes are children of root to ensure they are all reachable. Remove the
tracking of nodes that are "top level" or global. This information is
not used and can be obtained from the Decls stored inside
CallGraphNodes.
Instead of existing ordering hacks, analyze the functions in topological
order over the Call Graph.
Together with the addition of devirtualizable ObjC message sends and
blocks to the call graph, this gives around 6% performance improvement
on several large ObjC benchmarks.
llvm-svn: 170826
This paves the road for constructing a better function dependency graph.
If we analyze a function before the functions it calls and inlines,
there is more opportunity for optimization.
Note, we add call edges to the called methods that correspond to
function definitions (declarations with bodies).
llvm-svn: 170825
Not all of the expected instructions were being generated for the function being disassembled on x86-64-based Linux. It had no push, pop or leave.
llvm-svn: 170818
memory bound checks. Before the fix we were able to vectorize this loop from
the Livermore Loops benchmark:
for ( k=1 ; k<n ; k++ )
x[k] = x[k-1] + y[k];
llvm-svn: 170811
Instructions that are inserted in a basic block can still be decorated
with addOperand(MO).
Make the two-argument addOperand() function contain the actual
implementation. This function will now always have a valid MF reference
that it can use for memory allocation.
llvm-svn: 170798
This function is often used to decorate dangling instructions, so a
context reference is required to allocate memory for the operands.
Also add a corresponding MachineInstrBuilder method.
llvm-svn: 170797