This is one of the folds requested in:
https://llvm.org/PR39480https://alive2.llvm.org/ce/z/NczU3V
Note - this uses the normal FMF propagation logic
(flags transfer from the final value to new/intermediate ops).
It's not clear if this matches what Alive2 implements,
so we may want to adjust one or the other.
Follow up to D88631 but for aarch64; the Linux kernel uses the command
line flags:
1. -mstack-protector-guard=sysreg
2. -mstack-protector-guard-reg=sp_el0
3. -mstack-protector-guard-offset=0
to use the system register sp_el0 for the stack canary, enabling the
kernel to have a unique stack canary per task (like a thread, but not
limited to userspace as the kernel can preempt itself).
Address pr/47341 for aarch64.
Fixes: https://github.com/ClangBuiltLinux/linux/issues/289
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed By: xiangzhangllvm, DavidSpickett, dmgreen
Differential Revision: https://reviews.llvm.org/D100919
The LAM mode is currently untested by check-hwasan, so we only need
to build the runtime in aliasing mode. Because LAM mode will always
need to be conditional (because only certain hardware will support
it) we can always just disable the LAM lit tests if it ever starts
being tested.
- Enables inferring return type for ConstShape, takes into account valid return types;
- The compatible return type function could be reused, leaving that for next use refactoring;
Differential Revision: https://reviews.llvm.org/D102182
This patch contains the bare minimum to run the new Pass Manager from the LLVM-C APIs. It does not feature PGOOptions, PassPlugins or Debugify in its current state. Bugzilla: PR48499
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D102136
The experimental flag for "inplace" bufferization in the sparse
compiler can be replaced with the new inplace attribute. This gives
a uniform way of expressing the more efficient way of bufferization.
Reviewed By: bixia
Differential Revision: https://reviews.llvm.org/D102538
Has the effect that `__mh_execute_header` stays in the symbol table of
outputs even after running `strip` on the output. I don't know if that's
important for anything -- my motivation for the patch is just is to make
the output more similar to ld64.
(Corresponds to symbolTableInAndNeverStrip in ld64.)
Differential Revision: https://reviews.llvm.org/D102619
This patch contains the bare minimum to run the new Pass Manager from the LLVM-C APIs. It does not feature PGOOptions, PassPlugins or Debugify in its current state. Bugzilla: PR48499
Reviewed By: aeubanks
Differential Revision: https://reviews.llvm.org/D102136
We have a bug in which using member_clang_type.GetByteSize() triggers record
layout and during this process since the record was not yet complete we ended
up reaching a record that had not been layed out yet.
Using member_type->GetByteSize() avoids this situation since it relies on size
from DWARF and will not trigger record layout.
For reference: rdar://77293040
Differential Revision: https://reviews.llvm.org/D102445
I think i've added exhaustive test coverage, and i have verified that alive2 is happy with all the tests,
so in principle i'm fine with landing this without review, but just in case..
This adds support for the "count active bits" pattern, i.e.:
```
int countActiveBits(unsigned val) {
int cnt = 0;
for( ; (val >> cnt) != 0; ++cnt)
;
return cnt;
}
```
but a somewhat more general one, since that is what i need:
```
int countActiveBits(unsigned val, int start, int off) {
int cnt;
for (cnt = start; val >> (cnt + off); cnt++)
;
return cnt;
}
```
I've followed in footstep of 'left-shift until bittest' idiom (D91038),
in the sense that iff the `ctlz` intrinsic is cheap, we'll transform,
regardless of all other factors.
This can have a shocking effect on certain benchmarks:
```
raw.pixls.us-unique/Olympus/XZ-1$ /repositories/googlebenchmark/tools/compare.py -a benchmarks ~/rawspeed/build-{old,new}/src/utilities/rsbench/rsbench --benchmark_counters_tabular=true --benchmark_min_time=0.00000001 --benchmark_repetitions=128 p1319978.orf
RUNNING: /home/lebedevri/rawspeed/build-old/src/utilities/rsbench/rsbench --benchmark_counters_tabular=true --benchmark_min_time=0.00000001 --benchmark_repetitions=128 p1319978.orf --benchmark_display_aggregates_only=true --benchmark_out=/tmp/tmp49_28zcm
2021-05-09T01:06:05+03:00
Running /home/lebedevri/rawspeed/build-old/src/utilities/rsbench/rsbench
Run on (32 X 3600.24 MHz CPU s)
CPU Caches:
L1 Data 32 KiB (x16)
L1 Instruction 32 KiB (x16)
L2 Unified 512 KiB (x16)
L3 Unified 32768 KiB (x2)
Load Average: 5.26, 6.29, 3.49
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations CPUTime,s CPUTime/WallTime Pixels Pixels/CPUTime Pixels/WallTime Raws/CPUTime Raws/WallTime WallTime,s
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
p1319978.orf/threads:32/process_time/real_time_mean 145 ms 145 ms 128 0.145319 0.999981 10.1568M 69.8949M 69.8936M 6.88159 6.88146 0.145322
p1319978.orf/threads:32/process_time/real_time_median 145 ms 145 ms 128 0.145317 0.999986 10.1568M 69.8941M 69.8931M 6.88151 6.88141 0.145319
p1319978.orf/threads:32/process_time/real_time_stddev 0.766 ms 0.766 ms 128 766.586u 15.1302u 0 354.167k 354.098k 0.0348699 0.0348631 766.469u
RUNNING: /home/lebedevri/rawspeed/build-new/src/utilities/rsbench/rsbench --benchmark_counters_tabular=true --benchmark_min_time=0.00000001 --benchmark_repetitions=128 p1319978.orf --benchmark_display_aggregates_only=true --benchmark_out=/tmp/tmpwb9sw2x0
2021-05-09T01:06:24+03:00
Running /home/lebedevri/rawspeed/build-new/src/utilities/rsbench/rsbench
Run on (32 X 3599.95 MHz CPU s)
CPU Caches:
L1 Data 32 KiB (x16)
L1 Instruction 32 KiB (x16)
L2 Unified 512 KiB (x16)
L3 Unified 32768 KiB (x2)
Load Average: 4.05, 5.95, 3.43
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Benchmark Time CPU Iterations CPUTime,s CPUTime/WallTime Pixels Pixels/CPUTime Pixels/WallTime Raws/CPUTime Raws/WallTime WallTime,s
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
p1319978.orf/threads:32/process_time/real_time_mean 99.8 ms 99.8 ms 128 0.0997758 0.999972 10.1568M 101.797M 101.794M 10.0225 10.0222 0.0997786
p1319978.orf/threads:32/process_time/real_time_median 99.7 ms 99.7 ms 128 0.0997165 0.999985 10.1568M 101.857M 101.854M 10.0284 10.0281 0.0997195
p1319978.orf/threads:32/process_time/real_time_stddev 0.224 ms 0.224 ms 128 224.166u 34.345u 0 226.81k 227.231k 0.0223309 0.0223723 224.586u
Comparing /home/lebedevri/rawspeed/build-old/src/utilities/rsbench/rsbench to /home/lebedevri/rawspeed/build-new/src/utilities/rsbench/rsbench
Benchmark Time CPU Time Old Time New CPU Old CPU New
----------------------------------------------------------------------------------------------------------------------------------------------------
p1319978.orf/threads:32/process_time/real_time_pvalue 0.0000 0.0000 U Test, Repetitions: 128 vs 128
p1319978.orf/threads:32/process_time/real_time_mean -0.3134 -0.3134 145 100 145 100
p1319978.orf/threads:32/process_time/real_time_median -0.3138 -0.3138 145 100 145 100
p1319978.orf/threads:32/process_time/real_time_stddev -0.7073 -0.7078 1 0 1 0
```
Reviewed By: craig.topper, zhuhan0
Differential Revision: https://reviews.llvm.org/D102116
This change makes the conversion of an mlir::OpState to bool `explicit`. Idiomatic boolean uses continue to work as before, but questionable implicit uses (e.g. accumulating over a range of OpStates to count "true" states) become ill-formed. This makes the class interface a lilttle less error-prone.
I tested this change on our internal (fairly large) codebase, and only one fix was needed, which was ultimately an improvement of the affected code.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D101989
Missing or duplicate spack package should not cause error, since
users may only installed llvm/clang package, or users may installed
duplicate HIP package but will use environment variable or compiler
option to choose HIP path.
The message about missing or duplicate spack package is informational,
therefore should be emitted only when -v is specified.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D102556
Initial version of pooling assumed normalization was accross all elements
equally. TOSA actually requires the noramalization is perform by how
many elements were summed (edges are not artifically dimmer). Updated
the lowering to reflect this change with corresponding tests.
Reviewed By: NatashaKnk
Differential Revision: https://reviews.llvm.org/D102540
Since we have both aliasing mode and Intel LAM on x86_64, we need to
choose the mode at either run time or compile time. This patch
implements the plumbing to build both and choose between them at
compile time.
Reviewed By: vitalybuka, eugenis
Differential Revision: https://reviews.llvm.org/D102286
Bug 49356 (https://bugs.llvm.org/show_bug.cgi?id=49356) reports crash in
the test case `tasking/bug_taskwait_detach.cpp`, which is caused by the wrong
function declaration. `gtid` in `__kmpc_omp_task` should be `kmp_int32`.
Reviewed By: AndreyChurbanov
Differential Revision: https://reviews.llvm.org/D102584
This patch adds a new test for loop-unrolling with multiple exiting
blocks, where the latch does not exit, but the header does. This can
happen when the loop has not been rotated, e.g. due to minsize.
Inspired by the following end-to-end test, using -Oz
https://godbolt.org/z/fP6sna8qK
bool foo(int *ptr, int limit) {
#pragma clang loop unroll(full)
for (unsigned int i = 0; i < 4; i++) {
if (ptr[i] > limit)
return false;
ptr[i]++;
}
return true;
}
1.[bool, char, short] bitfields have the same alignment as unsigned int
2.Adjust alignment on typedef field decls/honor align attribute
3.Fix alignment for scoped enum class
4.Long long bitfield has 4bytes alignment and StorageUnitSize under 32 bit
compile mode
Differential Revision: https://reviews.llvm.org/D87029
Translate ExitDataOp with delete and copyout operands to runtime call.
This is done in a similar way as D101504.
Reviewed By: kiranchandramohan
Differential Revision: https://reviews.llvm.org/D102381
All of the CHECK lines should be identical to before,
but without any of the x86-specific calls that were
replaced with generic FMA long ago.
The file still has value because it shows a miscompile
as demonstrated in D90901, but we probably need to
add tests with FMF to make that explicit without
losing coverage.
This patch removes duplicates also encountered in the output of clang-scan-deps when one same header file is encountered with different casing and/or different separators ('/' vs '\').
The case of separators can appear when the same file is included externally by
`#include <folder/file.h>`
whereas a file from the same folder does
`#include "file.h"`
Under Windows, clang computes the paths using '/' from the include directive, the `\` from the -I options, and the concatenations use the native `\`, leading to internal paths containing a mix of both separators.
Differential Revision: https://reviews.llvm.org/D102339
Set the output register class based on the output type, instead of
hard-coding VGPR_32. I think this is more correct. It doesn't make any
difference at the moment because we use the same class for 16- and
32-bit results, but it might in future if we make more use of true
16-bit register classes.
Differential Revision: https://reviews.llvm.org/D102622
We can only use ASTContext::getTypeInfo for complete types.
This fixes bugzilla issue 50313.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D102569
Broadcast dimensions of vector transfer ops are always in-bounds. This is consistent with the fact that the starting position of a transfer is always in-bounds.
Differential Revision: https://reviews.llvm.org/D102566
Adding lowering support for bitreverse.
Previously, lowering bitreverse would expand it into a series of other instructions. This patch makes it so this produces a single rbit instruction instead.
Reviewed By: dmgreen
Differential Revision: https://reviews.llvm.org/D102397
`__block` variables used to be always stored on the head instead of stack.
D51564 allowed `__block` variables to the stored on the stack like normal
variablesif they not captured by any escaping block, but the debug-info
generation code wasn't made aware of it so we still unconditionally emit DWARF
expressions pointing to the heap.
This patch makes CGDebugInfo use the `EscapingByref` introduced in D51564 that
tracks whether the `__block` variable is actually on the heap. If it's stored on
the stack instead we just use the debug info we would generate for normal
variables instead.
Reviewed By: ahatanak, aprantl
Differential Revision: https://reviews.llvm.org/D99946
This brings it in line with the bultin unrealized_conversion_cast,
which memref.buffer_cast is a specialized version of.
Differential Revision: https://reviews.llvm.org/D102608
This fixes https://bugs.llvm.org/show_bug.cgi?id=50370,
which reports a yet another endless combine loop,
this one regressed from 554b1bced3,
which fixed yet another endless combine loop (PR50308)
This code had fallen into the very typical pitfall of forgetting
that constant expressions exist, and they aren't free to invert,
because the `not` won't be absorbed by the "constant",
but will remain a (constant) expression...
Currently, if the user specifies the environment variable 'CLANG', tests
will attempt to use the value as a path to the clang executable.
Previously, lldb could also be specified via the CLANG environment
variable, but this was almost certainly a bug, because that meant both
clang and lldb would have the same path. This patch changes the
environment variable for lldb to 'LLDB'.
Reviewed by: thopre, teemperor
Differential Revision: https://reviews.llvm.org/D101982
Fixes issues with vectors in reinterpret_cast in C++ for OpenCL
and adds tests to make sure they both pass without errors and
generate the correct code.
Fixes: PR47977
Reviewed By: Anastasia
Differential Revision: https://reviews.llvm.org/D101519