This patch allows target shuffles to be combined to single input immediate permute instructions - (V)PSHUFD/VPERMILPD/VPERMILPS - allowing more general pattern matching than what we current do and improves the likelihood of memory folding compared to existing patterns which tend to reuse the input in multiple arguments.
Further permute instructions (V)PSHUFLW/(V)PSHUFHW/(V)PERMQ/(V)PERMPD may be added in the future but its proven tricky to create tests cases for them so far. (V)PSHUFLW/(V)PSHUFHW is already handled quite well in combineTargetShuffle so it may be that removing some of that code may allow us to perform more of the combining in one place without duplication.
Differential Revision: http://reviews.llvm.org/D21148
llvm-svn: 273999
autogenerated.
Also update existing test cases which appear to be generated by it and
weren't modified (other than addition of the header) by rerunning it.
llvm-svn: 253917
The XformToShuffleWithZero method currently checks AND masks at the per-lane level for all-one and all-zero constants and attempts to convert them to legal shuffle clear masks.
This patch generalises XformToShuffleWithZero, splitting and checking the sub-lanes of the constants down to the byte level to see if any legal shuffle clear masks are possible. This allows a lot of masks (often from legalization or truncation) to be folded into existing shuffle patterns and removes a lot of constant mask loading.
There are a few examples of poor shuffle lowering that are exposed by this patch that will be cleaned up in future patches (e.g. merging shuffles that are separated by bitcasts, x86 legalized v8i8 zero extension uses PMOVZX+AND+AND instead of AND+PMOVZX, etc.)
Differential Revision: http://reviews.llvm.org/D11518
llvm-svn: 243831
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
reflects the fact that the x86 backend can in fact lower any shuffle you
want it to with reasonably high code quality.
My recent work on the new vector shuffle has made this regress *very*
little. The diff in the test cases makes me very, very happy.
llvm-svn: 229958
addition to lowering to trees rooted in an unpack.
This saves shuffles and or registers in many various ways, lets us
handle another class of v4i32 shuffles pre SSE4.1 without domain
crosses, etc.
llvm-svn: 229856
terribly complex partial blend logic.
This code path was one of the more complex and bug prone when it first
went in and it hasn't faired much better. Ultimately, with the simpler
basis for unpack lowering and support bit-math blending, this is
completely obsolete. In the worst case without this we generate
different but equivalent instructions. However, in many cases we
generate much better code. This is especially true when blends or pshufb
is available.
This does expose one (minor) weakness of the unpack lowering that I'll
try to address.
In case you were wondering, this is actually a big part of what I've
been trying to pull off in the recent string of commits.
llvm-svn: 229853
needed, and significantly improve the SSSE3 path.
This makes the new strategy much more clear. If we can blend, we just go
with that. If we can't blend, we try to permute into an unpack so
that we handle cases where the unpack doing the blend also simplifies
the shuffle. If that fails and we've got SSSE3, we now call into
factored-out pshufb lowering code so that we leverage the fact that
pshufb can set up a blend for us while shuffling. This generates great
code, especially because we *know* we don't have a fast blend at this
point. Finally, we fall back on decomposing into permutes and blends
because we do at least have a bit-math-based blend if we need to use
that.
This pretty significantly improves some of the v8i16 code paths. We
never need to form pshufb for the single-input shuffles because we have
effective target-specific combines to form it there, but we were missing
its effectiveness in the blends.
llvm-svn: 229851
them into permutes and a blend with the generic decomposition logic.
This works really well in almost every case and lets the code only
manage the expansion of a single input into two v8i16 vectors to perform
the actual shuffle. The blend-based merging is often much nicer than the
pack based merging that this replaces. The only place where it isn't we
end up blending between two packs when we could do a single pack. To
handle that case, just teach the v2i64 lowering to handle these blends
by digging out the operands.
With this we're down to only really random permutations that cause an
explosion of instructions.
llvm-svn: 229849
lowering paths. I'm going to be leveraging this to simplify a lot of the
overly complex lowering of v8 and v16 shuffles in pre-SSSE3 modes.
Sadly, this isn't profitable on v4i32 and v2i64. There, the float and
double blending instructions for pre-SSE4.1 are actually pretty good,
and we can't beat them with bit math. And once SSE4.1 comes around we
have direct blending support and this ceases to be relevant.
Also, some of the test cases look odd because the domain fixer
canonicalizes these to floating point domain. That's OK, it'll use the
integer domain when it matters and some day I may be able to update
enough of LLVM to canonicalize the other way.
This restores almost all of the regressions from teaching x86's vselect
lowering to always use vector shuffle lowering for blends. The remaining
problems are because the v16 lowering path is still doing crazy things.
I'll be re-arranging that strategy in more detail in subsequent commits
to finish recovering the performance here.
llvm-svn: 229836
This patch builds on http://reviews.llvm.org/D5598 to perform byte rotation shuffles (lowerVectorShuffleAsByteRotate) on pre-SSSE3 (palignr) targets - pre-SSSE3 is only enabled on i8 and i16 vector targets where it is a more definite performance gain.
I've also added a separate byte shift shuffle (lowerVectorShuffleAsByteShift) that makes use of the ability of the SLLDQ/SRLDQ instructions to implicitly shift in zero bytes to avoid the need to create a zero register if we had used palignr.
Differential Revision: http://reviews.llvm.org/D5699
llvm-svn: 222340
Update the entire regression test suite for the new shuffles. Remove
most of the old testing which was devoted to the old shuffle lowering
path and is no longer relevant really. Also remove a few other random
tests that only really exercised shuffles and only incidently or without
any interesting aspects to them.
Benchmarking that I have done shows a few small regressions with this on
LNT, zero measurable regressions on real, large applications, and for
several benchmarks where the loop vectorizer fires in the hot path it
shows 5% to 40% improvements for SSE2 and SSE3 code running on Sandy
Bridge machines. Running on AMD machines shows even more dramatic
improvements.
When using newer ISA vector extensions the gains are much more modest,
but the code is still better on the whole. There are a few regressions
being tracked (PR21137, PR21138, PR21139) but by and large this is
expected to be a win for x86 generated code performance.
It is also more correct than the code it replaces. I have fuzz tested
this extensively with ISA extensions up through AVX2 and found no
crashes or miscompiles (yet...). The old lowering had a few miscompiles
and crashers after a somewhat smaller amount of fuzz testing.
There is one significant area where the new code path lags behind and
that is in AVX-512 support. However, there was *extremely little*
support for that already and so this isn't a significant step backwards
and the new framework will probably make it easier to implement lowering
that uses the full power of AVX-512's table-based shuffle+blend (IMO).
Many thanks to Quentin, Andrea, Robert, and others for benchmarking
assistance. Thanks to Adam and others for help with AVX-512. Thanks to
Hal, Eric, and *many* others for answering my incessant questions about
how the backend actually works. =]
I will leave the old code path in the tree until the 3 PRs above are at
least resolved to folks' satisfaction. Then I will rip it (and 1000s of
lines of code) out. =] I don't expect this flag to stay around for very
long. It may not survive next week.
llvm-svn: 219046
were added in SSE2, no SSSE3. Found this while auditing all uses of
SSSE3 in the X86 target. I don't actually expect this to make
a significant difference on anything and I don't have any detailed test
cases but I updated the existing test cases that already covered some of
this code path.
llvm-svn: 209056
Also avoid locals evicting locals just because they want a cheaper register.
Problem: MI Sched knows exactly how many registers we have and assumes
they can be colored. In cases where we have large blocks, usually from
unrolled loops, greedy coloring fails. This is a source of
"regressions" from the MI Scheduler on x86. I noticed this issue on
x86 where we have long chains of two-address defs in the same live
range. It's easy to see this in matrix multiplication benchmarks like
IRSmk and even the unit test misched-matmul.ll.
A fundamental difference between the LLVM register allocator and
conventional graph coloring is that in our model a live range can't
discover its neighbors, it can only verify its neighbors. That's why
we initially went for greedy coloring and added eviction to deal with
the hard cases. However, for singly defined and two-address live
ranges, we can optimally color without visiting neighbors simply by
processing the live ranges in instruction order.
Other beneficial side effects:
It is much easier to understand and debug regalloc for large blocks
when the live ranges are allocated in order. Yes, global allocation is
still very confusing, but it's nice to be able to comprehend what
happened locally.
Heuristics could be added to bias register assignment based on
instruction locality (think late register pairing, banks...).
Intuituvely this will make some test cases that are on the threshold
of register pressure more stable.
llvm-svn: 187139
This update was done with the following bash script:
find test/CodeGen -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc.*debug" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_-]*\):\( *\)$FUNC: *\$/;\1\2-LABEL:\3$FUNC:/g" $TEMP
done
sed -i '' "s/;\(.*\)-LABEL-LABEL:/;\1-LABEL:/" $TEMP
sed -i '' "s/;\(.*\)-NEXT-LABEL:/;\1-NEXT:/" $TEMP
sed -i '' "s/;\(.*\)-NOT-LABEL:/;\1-NOT:/" $TEMP
sed -i '' "s/;\(.*\)-DAG-LABEL:/;\1-DAG:/" $TEMP
mv $TEMP $NAME
fi
done
llvm-svn: 186280
instructions of the two-address operands) in order to avoid inserting copies.
This fixes the few regressions introduced when the two-address hack was
disabled (without regressing the improvements).
rdar://10422688
llvm-svn: 144559
instruction lower optimization" in the pre-RA scheduler.
The optimization, rather the hack, was done before MI use-list was available.
Now we should be able to implement it in a better way, perhaps in the
two-address pass until a MI scheduler is available.
Now that the scheduler has to backtrack to handle call sequences. Adding
artificial scheduling constraints is just not safe. Furthermore, the hack
is not taking all the other scheduling decisions into consideration so it's just
as likely to pessimize code. So I view disabling this optimization goodness
regardless of PR11314.
llvm-svn: 144267
fixes: Use a separate register, instead of SP, as the
calling-convention resource, to avoid spurious conflicts with
actual uses of SP. Also, fix unscheduling of calling sequences,
which can be triggered by pseudo-two-address dependencies.
llvm-svn: 143206
it fixes the dragonegg self-host (it looks like gcc is miscompiled).
Original commit messages:
Eliminate LegalizeOps' LegalizedNodes map and have it just call RAUW
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
Delete #if 0 code accidentally left in.
llvm-svn: 143188
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
llvm-svn: 143177
RAGreedy::tryAssign will now evict interference from the preferred
register even when another register is free.
To support this, add the EvictionCost struct that counts how many hints
are broken by an eviction. We don't want to break one hint just to
satisfy another.
Rename canEvict to shouldEvict, and add the first bit of eviction policy
that doesn't depend on spill weights: Always make room in the preferred
register as long as the evictees can be split and aren't already
assigned to their preferred register.
Also make the CSR avoidance more accurate. When looking for a cheaper
register it is OK to use a new volatile register. Only CSR aliases that
have never been used before should be avoided.
llvm-svn: 134735
Most of these tests require a single mov instruction that can come either before
or after a 2-addr instruction. -join-physregs changes the behavior, but the
results are equivalent.
llvm-svn: 130891
CopyToReg/CopyFromReg/INLINEASM. These are annoying because
they have the same opcode before an after isel. Fix this by
setting their NodeID to -1 to indicate that they are selected,
just like what automatically happens when selecting things that
end up being machine nodes.
With that done, give IsLegalToFold a new flag that causes it to
ignore chains. This lets the HandleMergeInputChains routine be
the one place that validates chains after a match is successful,
enabling the new hotness in chain processing. This smarter
chain processing eliminates the need for "PreprocessRMW" in the
X86 and MSP430 backends and enables MSP to start matching it's
multiple mem operand instructions more aggressively.
I currently #if out the dead code in the X86 backend and MSP
backend, I'll remove it for real in a follow-on patch.
The testcase changes are:
test/CodeGen/X86/sse3.ll: we generate better code
test/CodeGen/X86/store_op_load_fold2.ll: PreprocessRMW was
miscompiling this before, we now generate correct code
Convert it to filecheck while I'm at it.
test/CodeGen/MSP430/Inst16mm.ll: Add a testcase for mem/mem
folding to make anton happy. :)
llvm-svn: 97596
only run for x86 with fastisel. I've found it being very effective in
eliminating some obvious dead code as result of formal parameter lowering
especially when tail call optimization eliminated the need for some of the loads
from fixed frame objects. It also shrinks a number of the tests. A couple of
tests no longer make sense and are now eliminated.
llvm-svn: 95493
to instructions instead of zero extended ones. This makes the asmprinter
print signed values more consistently. This apparently only really affects
the X86 backend.
llvm-svn: 81265