Most PDB fields on disk are 32-bit but describe the file in terms of MSF
blocks, which are 4 kiB by default.
So PDB files can be a bit larger than 4 GiB, and much larger if you create them
with a block size > 4 kiB.
This is a first (necessary, but by far not not sufficient) step towards
supporting such PDB files. Now we don't truncate in-memory file offsets (which
are in terms of bytes, not in terms of blocks).
No effective behavior change. lld-link will still error out if it were to
produce PDBs > 4 GiB.
Differential Revision: https://reviews.llvm.org/D109923
Improve checking for NULL() and NULL(MOLD=) when used as
variables and expressions outside the few contexts where
a disassociated pointer can be valid. There were both
inappropriate errors and missing checks.
Differential Revision: https://reviews.llvm.org/D109905
To make the IR easier to analyze, this pass makes some minor transformations.
After that, even if it doesn't decide to optimize anything, it can't report that
it changed nothing and preserved all the analyses.
Reviewed By: reames
Differential Revision: https://reviews.llvm.org/D109855
The pattern is returning success even if it does no work leading to pattern application running up to the max iteration count and failing.
Reviewed By: nicolasvasilache, mravishankar
Differential Revision: https://reviews.llvm.org/D109791
This refactor changes the GlobalMethodPool to a class that contains
the DenseMap of methods. This is to allow for the addition of a
separate DenseSet in a follow-up diff that will handle method
de-duplication when inserting methods into the global method pool.
Changes:
- the `GlobalMethods` pair becomes `GlobalMethodPool::Lists`
- the `GlobalMethodPool` becomes a class containing the `DenseMap` of methods
- pass through methods are added to maintain most of the existing code without changing `MethodPool` -> `MethodPool.Methods` everywhere
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D109898
Presently, definitions default to those for Linux which are not defined for FreeBSD (HAVE_LSEEK64, HAVE_MALLINFO, etc.). Patch sets os_defines to posix definitions under FreeBSD.
Reviewed By: GMNGeoffrey
Differential Revision: https://reviews.llvm.org/D109913
This reverts commit 47dd1f6428.
After discussing with Jim Ingham, we agreed to leave the test as-is
so we can catch any CI problems instead of silently skipping the test.
A MachO userspace corefile may contain LC_THREAD commands which specify
thread exception state.
For arm64* only (for now), report a human-readable version of this state
as the thread stop reason, instead of 'SIGSTOP'.
As a follow-up, similar functionality can be implemented for x86 cores
by translating the trapno/err exception registers.
rdar://82898146
Differential Revision: https://reviews.llvm.org/D109795
I have 2 goals with this change:
1. Disambiguate between CPlusPlus::FindAlternateFunctionManglings and
IRExecutionUnit::FindBestAlternateMangledName. These are named very
similar things, they try to do very similar things, but their
approaches are different. This change should make it clear that one
is generating possible alternate manglings (through some
heuristics-based approach) and the other is finding alternate
manglings (through searching the SymbolFile for potential matches).
2. Change GenerateAlternateFunctionManglings from a static method in
CPlusPlusLanguage to a virtual method in Language. This will allow us
to remove a direct use of CPlusPlusLanguage in IRExecutionUnit,
further pushing it to be more general. This change doesn't meet this
goal completely but allows for it to happen later.
Though this doesn't remove IRExecutionUnit's dependency on
CPlusPlusLanguage, it does bring us closer to that goal.
Differential Revision: https://reviews.llvm.org/D109785
Nonfunctional commit fixing several minor spelling errors in llvm/lib/Target/AMDGPU header files.
Testing workflow as a new contributor.
Differential Revision: https://reviews.llvm.org/D109733
xcodebuild, which is invoked by the apple_simulator_test decorator, may
may return a successful status even if it was unable to run due to the
authorization agent denying it. This causes the TestAppleSimulatorOSType
to run when it shouldn't, and throw an excpection when parsing the JSON
that lists the simulators available. Wrap the json parsing in a
try/except block and if it fails, skip the ttest.
Differential Revision: https://reviews.llvm.org/D109336
Skip stack accesses unless requested, as the memory profiler runtime
does not currently look at or report accesses for these addresses.
Differential Revision: https://reviews.llvm.org/D109868
getMetadata() currently uses a weird API where it populates a
structure passed to it, and optionally merges into it. Instead,
we can return the AAMDNodes and provide a separate merge() API.
This makes usages more compact.
Differential Revision: https://reviews.llvm.org/D109852
On Fuchsia, killing or exiting a process that has a thread listening to its own process's debugger exception channel can hang. Zircon may kill all the threads, send a synthetic exceptions to debugger, and wait for the debugger to have received them. This means the thread listening to the debug exception channel may be killed even as Zircon is waiting for that thread to drain the exception channel, and the process can become stuck in a half-dead state.
This situation is "weird" as it only arises when a process is trying to debug itself. Unfortunately, this is exactly the scenario for libFuzzer on Fuchsia: FuzzerUtilFuchsia spawns a crash-handling thread that acts like a debugger in order to be able to rewrite the crashed threads stack and resume them into libFuzzer's usual POSIX signal handlers. In practice, approximately 25% of fuzzers appear to hang on exit, after generating output and artifacts. These processes hang around until the platform is torn done, which is typically a ClusterFuzz VM. Thus, real-world impact has been somewhat mitigated. The issue should still be resolved for local users, though.
This change improves the behavior of exit() in libFuzzer by adding an atexit handler which closes an event shared with the crash handling thread. This signals to the crash handler that it should close the exception channel and be joined before the process actually exits.
Reviewed By: charco
Differential Revision: https://reviews.llvm.org/D109258
TosaOp defintion had an artificial constraint that the input/output types
needed to be ranked to invoke the quantization builder. This is correct as an
unranked tensor could still be quantized.
Reviewed By: NatashaKnk
Differential Revision: https://reviews.llvm.org/D109863
This test checks that timers are working and printing as expected.
I also seem to have changed the order of the timers in my globals refactoring
patch, so I fixed it here.
Differential Revision: https://reviews.llvm.org/D109904
AIX and z/OS lack Objective-C support, so mark these tests as unsupported for AIX and z/OS.
Reviewed By: jsji
Differential Revision: https://reviews.llvm.org/D109060
SimplifyDemandedBits can turn srl into sra if the bits being shifted
in aren't demanded. This patch can recover the original sra in some cases.
I've renamed the tablegen class for detecting W users since the "overflowing operator"
term I originally borrowed from Operator.h does not include srl.
Reviewed By: luismarques
Differential Revision: https://reviews.llvm.org/D109162
This patch removes globals from the lldCOFF library, by moving globals
into a context class (COFFLinkingContext) and passing it around wherever
it's needed.
See https://lists.llvm.org/pipermail/llvm-dev/2021-June/151184.html for
context about removing globals from LLD.
I also haven't moved the `driver` or `config` variables yet.
Differential Revision: https://reviews.llvm.org/D109634
In https://reviews.llvm.org/D100481, forceful inline of all non-kernel
functions using lds was disabled since AMDGPULowerModuleLDS pass now handles
static lds. However that pass does not handle extern lds so non-kernel
functions using extern lds must sill be inline.
Reviewed By: hsmhsm, arsenm
Differential Revision: https://reviews.llvm.org/D109773
This makes some tests in vector-reductions-logical.ll more stable when
applying D108837.
The cost of branching is higher when vector ops are involved due to
potential SLP transformations.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D108935
Turn on `use-context-cost-for-preinliner` to use context-sensitive byte size cost for preinliner decisions by default.
This is a more accurate proxy of inline cost than profile size. We tested on our large workload that it delivers measureable CPU improvement.
Differential Revision: https://reviews.llvm.org/D109893
We are having issues running the integration test of the sparse compiler
on AArch64 (crashing in the lib). This revision adds more assertions.
Reviewed By: jsetoain
Differential Revision: https://reviews.llvm.org/D109861
This patch supports construct trait set selector by using the existed
declare variant infrastructure inside `OMPContext` and simd selector is
currently not supported. The goal of this patch is to pass the declare variant
test inside sollve test suite.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D109635
This way, we do not need to set LLVM_CMAKE_PATH to LLVM_CMAKE_DIR when (NOT LLVM_CONFIG_FOUND)
Reviewed By: #libc, ldionne
Differential Revision: https://reviews.llvm.org/D107717
When `libcxx` or `libcxxabi` is built with `-DLLVM_USE_SANITIZER=MemoryWithOrigins`
**and** `-DLIBCXX[ABI]_USE_COMPILER_RT=ON`, all of the `LIBCXX[ABI]_SUPPORTS_*_FLAG`
checks fail, since the value of `CMAKE_REQUIRED_FLAGS` is not set correctly.
Bugzilla: https://bugs.llvm.org/show_bug.cgi?id=51774
Reviewed By: #libc, #libc_abi, compnerd, ldionne
Differential Revision: https://reviews.llvm.org/D109342
Specify the C and C++ standards explicitly for this test. This avoids
failures for drivers that default to older standards.
Differential Revision: https://reviews.llvm.org/D109857
Summary:
Introduce a new frontend flag `-fswift-async-fp={auto|always|never}`
that controls how code generation sets the Swift extended async frame
info bit. There are three possibilities:
* `auto`: which determines how to set the bit based on deployment target, either
statically or dynamically via `swift_async_extendedFramePointerFlags`.
* `always`: default, always set the bit statically, regardless of deployment
target.
* `never`: never set the bit, regardless of deployment target.
Differential Revision: https://reviews.llvm.org/D109451