IMHO it is an antipattern to have a enum value that is Default.
At any given piece of code it is not clear if we have to handle
Default or if has already been mapped to a concrete value. In this
case in particular, only the target can do the mapping and it is nice
to make sure it is always done.
This deletes the two default enum values of CodeModel and uses an
explicit Optional<CodeModel> when it is possible that it is
unspecified.
llvm-svn: 309911
Moves encoding (SYSm) information of banked registers to ARMSystemRegister.td,
where it rightly belongs and forms a single point of reference in the code.
Reviewed by: @fhahn, @rovka, @olista01
Differential Revision: https://reviews.llvm.org/D36219
llvm-svn: 309910
I was surprised to see the code model being passed to MC. After all,
it assembles code, it doesn't create it.
The one place it is used is in the expansion of .cfi directives to
handle .eh_frame being more that 2gb away from the code.
As far as I can tell, gnu assembler doesn't even have an option to
enable this. Compiling a c file with gcc -mcmodel=large produces a
regular looking .eh_frame. This is probably because in practice linker
parse and recreate .eh_frames.
In llvm this is used because the JIT can place the code and .eh_frame
very far apart. Ideally we would fix the jit and delete this
option. This is hard.
Apart from confusion another problem with the current interface is
that most callers pass CodeModel::Default, which is bad since MC has
no way to map it to the target default if it actually needed to.
This patch then replaces the argument with a boolean with a default
value. The vast majority of users don't ever need to look at it. In
fact, only CodeGen and llvm-mc use it and llvm-mc just to enable more
testing.
llvm-svn: 309884
Power 9 has instructions to do absolute difference (VABSDUB, VABSDUH, VABSDUW)
for byte, halfword and word. We should take advantage of these.
Differential Revision: https://reviews.llvm.org/D34684
llvm-svn: 309876
If there are no calls, this is a faster path than
searching the entire program for calls.
This was supposed to be left in r309781.
Fixes unused variable warning.
llvm-svn: 309832
This was failing on out of bounds access to the extra operands
on the s_swappc_b64 beyond those in the instruction definition.
This was working, but somehow regressed within the past few weeks,
although I don't see any obvious commit.
llvm-svn: 309782
Previous change "Turn s_and_saveexec_b64 into s_and_b64 if
result is unused" introduced asan use-after-poison error.
Instruction was analyzed after eraseFromParent() calls.
Move analysys higher than erase.
llvm-svn: 309779
With SI_END_CF elimination for some nested control flow we can now
eliminate saved exec register completely by turning a saveexec version
of instruction into just a logical instruction.
Differential Revision: https://reviews.llvm.org/D36007
llvm-svn: 309766
Add a pass to remove redundant S_OR_B64 instructions enabling lanes in
the exec. If two SI_END_CF (lowered as S_OR_B64) come together without any
vector instructions between them we can only keep outer SI_END_CF, given
that CFG is structured and exec bits of the outer end statement are always
not less than exec bit of the inner one.
This needs to be done before the RA to eliminate saved exec bits registers
but after register coalescer to have no vector registers copies in between
of different end cf statements.
Differential Revision: https://reviews.llvm.org/D35967
llvm-svn: 309762
The previous attempt, which made do with a single offset in
computeCalleeSaveRegisterPairs, wasn't quite enough. The previous
attempt only worked as long as CombineSPBump == true (since the
offset would be adjusted later in fixupCalleeSaveRestoreStackOffset).
Instead include the size for the fixed stack area used for win64
varargs in calculations in emitPrologue/emitEpilogue. The stack
consists of mainly three parts;
- AFI->getLocalStackSize()
- AFI->getCalleeSavedStackSize()
- FixedObject
Most of the places in the code which previously used the CSStackSize
now use PrologueSaveSize instead, which is the sum of the latter
two, while some cases which need exactly the middle one use
AFI->getCalleeSavedStackSize() explicitly instead of a local variable.
In addition to moving the offsetting into emitPrologue/emitEpilogue
(which fixes functions with CombineSPBump == false), also set the
frame pointer to point to the right location, where the frame pointer
and link register actually are stored. In addition to the prologue/epilogue,
this also requires changes to resolveFrameIndexReference.
Add tests for a function that keeps a frame pointer and another one
that uses a VLA.
Differential Revision: https://reviews.llvm.org/D35919
llvm-svn: 309744
The src0 register must match src1 or src2, but if these
were undefined they could end up using different implicit_defed
virtual registers. Force these to use one undef vreg or pick the
defined other register.
Also fixes producing invalid nodes without the right number of
inputs when src2 is undef.
llvm-svn: 309743
Includes a hack to fix the type selected for
the GlobalAddress of the function, which will be
fixed by changing the default datalayout to use
generic pointers for 0.
llvm-svn: 309732
Improves atom scheduler test coverage (to make it easier to upgrade them for PR32431).
Merged SSE_VEC_BIT_ITINS_P + SSE_BIT_ITINS_P as we were interchanging between them.
llvm-svn: 309715
Summary: The 64-bit 'and' with immediate instruction only supports a 32-bit immediate. So for larger constants we have to load the constant into a register first. If the immediate happens to be a mask we can use the BEXTRI instruction to perform the masking. We already do something similar using the BZHI instruction from the BMI2 instruction set.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D36129
llvm-svn: 309706
Improves atom scheduler test coverage (to make it easier to upgrade them for PR32431).
Checked on Agner that these actually match the UNPACK schedules, but better to include a separate class
llvm-svn: 309701
We were already using the 32 bit element opcode if BWI isn't enabled, but there's no reason to change opcode if we have BWI. We will still use the 8/16 opcodes for masked stores though.
This allows us to use the aligned opcode when we can which makes our test output more consistent between different modes. It also reduces the number of isel patterns we need.
This is a slight inconsistency with loads which default to 64 bit element opcodes. I'll probably rectify that in a future patch.
Differential Revision: https://reviews.llvm.org/D35978
llvm-svn: 309693
This patch enables control flow optimization for
variations of BBIT instruction. In this case
optimization removes unnecessary branch after
BBIT instruction.
Differential Revision: https://reviews.llvm.org/D35359
llvm-svn: 309679
Certain operations require vector of i1 values. However, for Hexagon
architecture compatibility, they need to be represented as vector of i8.
Patch by Suyog Sarda.
llvm-svn: 309677
These were taking priority over the aligned load instructions since there is no vmovda8/16. I don't think there is really a difference between aligned and unaligned on newer cpus so I don't think it matters which instructions we use.
But with this change we reduce the size of the isel table a little and we allow the aligned information to pass through to the evex->vec pass and produce the same output has avx/avx2 in some cases.
I also generally dislike patterns rooted in a bitcast which these were.
Differential Revision: https://reviews.llvm.org/D35977
llvm-svn: 309589
Summary:
Since r293359, most dump() function are only defined when
`!defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)` holds. print() functions
only used by dump() functions are now unused in release builds,
generating lots of warnings. This patch only defines some print()
functions if they are used.
Reviewers: MatzeB
Reviewed By: MatzeB
Subscribers: arsenm, mzolotukhin, nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D35949
llvm-svn: 309553
Added patterns to recognize AND 1 on the mask of a scalar masked
move is not needed since only the lower bit is relevant for the
instruction.
Differential Revision:
https://reviews.llvm.org/D35897
llvm-svn: 309546
Changed method names based on the discussion in https://reviews.llvm.org/D34986:
getInt64 -> selectI64Imm,
getInt64Count -> selectI64ImmInstrCount.
llvm-svn: 309541
MS ignores the keyword "short" when used after a jc/jz instruction, LLVM ought to do the same.
Test: D35893
Differential Revision: https://reviews.llvm.org/D35892
llvm-svn: 309509
Summary:
Most CPUs implementing AES fusion require instruction pairs of the form
AESE Vn, _
AESMC Vn, Vn
and
AESD Vn, _
AESIMC Vn, Vn
The constraint is added to AES(I)MC instructions which use the result of
an AES(E|D) instruction by using AES(I)MCTrr pseudo instructions, which
constraint source and destination registers to be the same.
A nice side effect of this change is that now all possible pairs are
scheduled back-to-back on the exynos-m1 for the misched-fusion-aes.ll
test case.
I had to update aes_load_store. The version I added initially was very
reduced and with the new constraint, AESE/AESMC could not be scheduled
back-to-back. I updated the test to be more realistic and still expose
the same scheduling problem as the initial test case.
Reviewers: t.p.northover, rengolin, evandro, kristof.beyls, silviu.baranga
Reviewed By: t.p.northover, evandro
Subscribers: aemerson, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D35299
llvm-svn: 309495
Summary:
This change gives a 0.25% speedup on execution time, a 0.82% improvement
in benchmark scores and a 0.20% increase in binary size on a Cortex-A53.
These numbers are the geomean results on a wide range of benchmarks from
the test-suite and a range of proprietary suites.
Reviewers: t.p.northover, aadg, silviu.baranga, mcrosier, rengolin
Reviewed By: rengolin
Subscribers: grimar, davide, aemerson, rengolin, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D35568
llvm-svn: 309494
This patch is in 2 parts:
1 - replace combineBT's use of SimplifyDemandedBits (hasOneUse only) with SelectionDAG::GetDemandedBits to more aggressively determine the lower bits used by BT.
2 - update SelectionDAG::GetDemandedBits to support ANY_EXTEND - if the demanded bits are only in the non-extended portion, then peek through and demand from the source value and then ANY_EXTEND that if we found a match.
Differential Revision: https://reviews.llvm.org/D35896
llvm-svn: 309486