argument in strncat.
The warning is ignored by default since it needs more qualification.
TODO: The warning message and the note are messy when
strncat is a builtin due to the macro expansion.
llvm-svn: 149524
cleans up and improves a few things:
- We get rid of the ugly dance of computing all of the captures in
data structures that clone those of CapturingScopeInfo, centralizing
the logic for accessing/updating these data structures
- We re-use the existing capture logic for 'this', which actually
works now.
Cleaned up some diagnostic wording in minor ways as well.
llvm-svn: 149516
It could only be specified on the commandline, and wouldn't show
up as an option in the GUI or when invoked via `cmake -i` at all.
This also tells CMake that it's a BOOL, rather than "UNINITIALIZED".
llvm-svn: 149506
And remove HAVE_CLANG_CONFIG_H, now that the header is generated
in the autoconf build, too. (clang r149497 / llvm r149498)
Also include the config.h header after all other headers, per
the LLVM coding standards.
It also turns out WindowsToolChain.cpp wasn't using the config
header at all, so that include's just deleted now.
llvm-svn: 149504
On Cygwin, at first, <stddef.h> is included without __need_wint_t.
Next, <stddef.h> is included with __need_wint_t, though Modules feature would not process <stddef.h> twice.
Then, wint_t is not found in system headers.
llvm-svn: 149500
The CMake build already generated one. Follows clang r149497.
This brings us one step closer to compiling and configuring clang
separately from LLVM using the autoconf build, too.
(I lack the right version of autoconf et al. to regen, but it
was a simple change, so I just updated configure manually.)
llvm-svn: 149498
This already exists in the CMake build, which is part of what makes
building clang separately from llvm via cmake possible. This cleans up
that discrepancy between the build systems (and sets the groundwork
for configuring clang separately, too).
llvm-svn: 149497
actually falls back to memmove.
In this case we still need to initialize real_memcpy, so we set it to
real_memmove
We check for MACOS_VERSION_SNOW_LEOPARD, because currently only Snow
Leopard and Lion are supported.
llvm-svn: 149492
This is a mess. According to the C++11 standard, pointer subtraction only has
undefined behavior if the difference of the array indices does not fit into a
ptrdiff_t.
However, common implementations effectively perform a char* subtraction first,
and then divide the result by the element size, which can cause overflows in
some cases. Those cases are not considered to be undefined behavior by this
change; perhaps they should be.
llvm-svn: 149490
You can now access a frame in a thread using:
lldb.SBThread.frame[int] -> lldb.SBFrame object for a frame in a thread
Where "int" is an integer index. You can also access a list object with all of
the frames using:
lldb.SBThread.frames => list() of lldb.SBFrame objects
All SB objects that give out SBAddress objects have properties named "addr"
lldb.SBInstructionList now has the following convenience accessors for len() and
instruction access using an index:
insts = lldb.frame.function.instructions
for idx in range(len(insts)):
print insts[idx]
Instruction lists can also lookup an isntruction using a lldb.SBAddress as the key:
pc_inst = lldb.frame.function.instructions[lldb.frame.addr]
lldb.SBProcess now exposes:
lldb.SBProcess.is_alive => BOOL Check if a process is exists and is alive
lldb.SBProcess.is_running => BOOL check if a process is running (or stepping):
lldb.SBProcess.is_running => BOOL check if a process is currently stopped or crashed:
lldb.SBProcess.thread[int] => lldb.SBThreads for a given "int" zero based index
lldb.SBProcess.threads => list() containing all lldb.SBThread objects in a process
SBInstruction now exposes:
lldb.SBInstruction.mnemonic => python string for instruction mnemonic
lldb.SBInstruction.operands => python string for instruction operands
lldb.SBInstruction.command => python string for instruction comment
SBModule now exposes:
lldb.SBModule.uuid => uuid.UUID(), an UUID object from the "uuid" python module
lldb.SBModule.symbol[int] => lldb.Symbol, lookup symbol by zero based index
lldb.SBModule.symbol[str] => list() of lldb.Symbol objects that match "str"
lldb.SBModule.symbol[re] => list() of lldb.Symbol objecxts that match the regex
lldb.SBModule.symbols => list() of all symbols in a module
SBAddress objects can now access the current load address with the "lldb.SBAddress.load_addr"
property. The current "lldb.target" will be used to try and resolve the load address.
Load addresses can also be set using this accessor:
addr = lldb.SBAddress()
addd.load_addr = 0x123023
Then you can check the section and offset to see if the address got resolved.
SBTarget now exposes:
lldb.SBTarget.module[int] => lldb.SBModule from zero based module index
lldb.SBTarget.module[str] => lldb.SBModule by basename or fullpath or uuid string
lldb.SBTarget.module[uuid.UUID()] => lldb.SBModule whose UUID matches
lldb.SBTarget.module[re] => list() of lldb.SBModule objects that match the regex
lldb.SBTarget.modules => list() of all lldb.SBModule objects in the target
SBSymbol now exposes:
lldb.SBSymbol.name => python string for demangled symbol name
lldb.SBSymbol.mangled => python string for mangled symbol name or None if there is none
lldb.SBSymbol.type => lldb.eSymbolType enum value
lldb.SBSymbol.addr => SBAddress object that represents the start address for this symbol (if there is one)
lldb.SBSymbol.end_addr => SBAddress for the end address of the symbol (if there is one)
lldb.SBSymbol.prologue_size => pythin int containing The size of the prologue in bytes
lldb.SBSymbol.instructions => SBInstructionList containing all instructions for this symbol
SBFunction now also has these new properties in addition to what is already has:
lldb.SBFunction.addr => SBAddress object that represents the start address for this function
lldb.SBFunction.end_addr => SBAddress for the end address of the function
lldb.SBFunction.instructions => SBInstructionList containing all instructions for this function
SBFrame now exposes the SBAddress for the frame:
lldb.SBFrame.addr => SBAddress which is the section offset address for the current frame PC
These are all in addition to what was already added. Documentation and website
updates coming soon.
llvm-svn: 149489
The purpose of refactoring is to hide operand roles from SwitchInst user (programmer). If you want to play with operands directly, probably you will need lower level methods than SwitchInst ones (TerminatorInst or may be User). After this patch we can reorganize SwitchInst operands and successors as we want.
What was done:
1. Changed semantics of index inside the getCaseValue method:
getCaseValue(0) means "get first case", not a condition. Use getCondition() if you want to resolve the condition. I propose don't mix SwitchInst case indexing with low level indexing (TI successors indexing, User's operands indexing), since it may be dangerous.
2. By the same reason findCaseValue(ConstantInt*) returns actual number of case value. 0 means first case, not default. If there is no case with given value, ErrorIndex will returned.
3. Added getCaseSuccessor method. I propose to avoid usage of TerminatorInst::getSuccessor if you want to resolve case successor BB. Use getCaseSuccessor instead, since internal SwitchInst organization of operands/successors is hidden and may be changed in any moment.
4. Added resolveSuccessorIndex and resolveCaseIndex. The main purpose of these methods is to see how case successors are really mapped in TerminatorInst.
4.1 "resolveSuccessorIndex" was created if you need to level down from SwitchInst to TerminatorInst. It returns TerminatorInst's successor index for given case successor.
4.2 "resolveCaseIndex" converts low level successors index to case index that curresponds to the given successor.
Note: There are also related compatability fix patches for dragonegg, klee, llvm-gcc-4.0, llvm-gcc-4.2, safecode, clang.
llvm-svn: 149482
The purpose of refactoring is to hide operand roles from SwitchInst user (programmer). If you want to play with operands directly, probably you will need lower level methods than SwitchInst ones (TerminatorInst or may be User). After this patch we can reorganize SwitchInst operands and successors as we want.
What was done:
1. Changed semantics of index inside the getCaseValue method:
getCaseValue(0) means "get first case", not a condition. Use getCondition() if you want to resolve the condition. I propose don't mix SwitchInst case indexing with low level indexing (TI successors indexing, User's operands indexing), since it may be dangerous.
2. By the same reason findCaseValue(ConstantInt*) returns actual number of case value. 0 means first case, not default. If there is no case with given value, ErrorIndex will returned.
3. Added getCaseSuccessor method. I propose to avoid usage of TerminatorInst::getSuccessor if you want to resolve case successor BB. Use getCaseSuccessor instead, since internal SwitchInst organization of operands/successors is hidden and may be changed in any moment.
4. Added resolveSuccessorIndex and resolveCaseIndex. The main purpose of these methods is to see how case successors are really mapped in TerminatorInst.
4.1 "resolveSuccessorIndex" was created if you need to level down from SwitchInst to TerminatorInst. It returns TerminatorInst's successor index for given case successor.
4.2 "resolveCaseIndex" converts low level successors index to case index that curresponds to the given successor.
Note: There are also related compatability fix patches for dragonegg, klee, llvm-gcc-4.0, llvm-gcc-4.2, safecode, clang.
llvm-svn: 149481
The pass pointer should never be referenced after sending it to
schedulePass(), which may delete the pass. To fix this bug I had to
clean up the design leading to more goodness.
You may notice now that any non-analysis pass is printed. So things like loop-simplify and lcssa show up, while target lib, target data, alias analysis do not show up. Normally, analysis don't mutate the IR, but you can now check this by using both -print-after and -print-before. The effects of analysis will now show up in between the two.
The llc path is still in bad shape. But I'll be improving it in my next checkin. Meanwhile, print-machineinstrs still works the same way. With print-before/after, many llc passes that were not printed before now are, some of these should be converted to analysis. A few very important passes, isel and scheduler, are not properly initialized, so not printed.
llvm-svn: 149480