Summary:
This patch adds explicit calling convention types for the Win64 and
System V/x86-64 ABIs. This allows code to override the default, and use
the Win64 convention on a target that wants to use SysV (and
vice-versa). This is needed to implement the `ms_abi` and `sysv_abi` GNU
attributes.
Reviewers:
CC:
llvm-svn: 186144
latency for certain models of the Intel Atom family, by converting
instructions into their equivalent LEA instructions, when it is both
useful and possible to do so.
llvm-svn: 180573
indirect through a memory address is to load the memory address into
a register and then call indirect through the register.
This patch implements this improvement by modifying SelectionDAG to
force a function address which is a memory reference to be loaded
into a virtual register.
Patch by Sriram Murali.
llvm-svn: 178171
If two functions require different features (e.g., `-mno-sse' vs. `-msse') then
we want to honor that, especially during LTO. We can do that by resetting the
subtarget's features depending upon the 'target-feature' attribute.
llvm-svn: 175314
conditions are met:
1. They share the same operand and are in the same BB.
2. Both outputs are used.
3. The target has a native instruction that maps to ISD::FSINCOS node or
the target provides a sincos library call.
Implemented the generic optimization in sdisel and enabled it for
Mac OSX. Also added an additional optimization for x86_64 Mac OSX by
using an alternative entry point __sincos_stret which returns the two
results in xmm0 / xmm1.
rdar://13087969
PR13204
llvm-svn: 173755
(defined by the x32 ABI) mode, in which case its pointers are 32-bits
in size. This knowledge is also added to X86RegisterInfo that now
returns the appropriate registers in getPointerRegClass.
There are many outcomes to this change. In order to keep the patches
separate and manageable, we start by focusing on some simple testable
cases. The patch adds a test with passing a pointer to a function -
focusing on the difference between the two data models for x86-64.
Another test is added for handling of 'sret' arguments (and
functionality is added in X86ISelLowering to make it work).
A note on naming: the "x32 ABI" document refers to the AMD64
architecture (in LLVM it's distinguished by being is64Bits() in the
x86 subtarget) with two variations: the LP64 (default) data model, and
the ILP32 data model. This patch adds predicates to the subtarget
which are consistent with this naming scheme.
llvm-svn: 173503
The current Intel Atom microarchitecture has a feature whereby
when a function returns early then it is slightly faster to execute
a sequence of NOP instructions to wait until the return address is ready,
as opposed to simply stalling on the ret instruction until
the return address is ready.
When compiling for X86 Atom only, this patch will run a pass,
called "X86PadShortFunction" which will add NOP instructions where less
than four cycles elapse between function entry and return.
It includes tests.
This patch has been updated to address Nadav's review comments
- Optimize only at >= O1 and don't do optimization if -Os is set
- Stores MachineBasicBlock* instead of BBNum
- Uses DenseMap instead of std::map
- Fixes placement of braces
Patch by Andy Zhang.
llvm-svn: 171879
URL: http://llvm.org/viewvc/llvm-project?rev=171524&view=rev
Log:
The current Intel Atom microarchitecture has a feature whereby when a function
returns early then it is slightly faster to execute a sequence of NOP
instructions to wait until the return address is ready,
as opposed to simply stalling on the ret instruction
until the return address is ready.
When compiling for X86 Atom only, this patch will run a pass, called
"X86PadShortFunction" which will add NOP instructions where less than four
cycles elapse between function entry and return.
It includes tests.
Patch by Andy Zhang.
llvm-svn: 171603
returns early then it is slightly faster to execute a sequence of NOP
instructions to wait until the return address is ready,
as opposed to simply stalling on the ret instruction
until the return address is ready.
When compiling for X86 Atom only, this patch will run a pass, called
"X86PadShortFunction" which will add NOP instructions where less than four
cycles elapse between function entry and return.
It includes tests.
Patch by Andy Zhang.
llvm-svn: 171524
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
textually as NativeClient. Also added a link to the native client project for
readers unfamiliar with it.
A Clang patch will follow shortly.
llvm-svn: 169291
missed in the first pass because the script didn't yet handle include
guards.
Note that the script is now able to handle all of these headers without
manual edits. =]
llvm-svn: 169224
- Add RTM code generation support throught 3 X86 intrinsics:
xbegin()/xend() to start/end a transaction region, and xabort() to abort a
tranaction region
llvm-svn: 167573
This adds 'elf' as a recognized target triple environment value and overrides the default generated object format on Windows platforms if that value is present. This patch also enables MCJIT tests on Windows using the new environment value.
llvm-svn: 165030
- CodeGenPrepare pass for identifying div/rem ops
- Backend specifies the type mapping using addBypassSlowDivType
- Enabled only for Intel Atom with O2 32-bit -> 8-bit
- Replace IDIV with instructions which test its value and use DIVB if the value
is positive and less than 256.
- In the case when the quotient and remainder of a divide are used a DIV
and a REM instruction will be present in the IR. In the non-Atom case
they are both lowered to IDIVs and CSE removes the redundant IDIV instruction,
using the quotient and remainder from the first IDIV. However,
due to this optimization CSE is not able to eliminate redundant
IDIV instructions because they are located in different basic blocks.
This is overcome by calculating both the quotient (DIV) and remainder (REM)
in each basic block that is inserted by the optimization and reusing the result
values when a subsequent DIV or REM instruction uses the same operands.
- Test cases check for the presents of the optimization when calculating
either the quotient, remainder, or both.
Patch by Tyler Nowicki!
llvm-svn: 163150
- Add 'UseSSEx' to force SSE legacy insn not being selected when AVX is
enabled.
As the penalty of inter-mixing SSE and AVX instructions, we need
prevent SSE legacy insn from being generated except explicitly
specified through some intrinsics. For patterns supported by both
SSE and AVX, so far, we force AVX insn will be tried first relying on
AddedComplexity or position in td file. It's error-prone and
introduces bugs accidentally.
'UseSSEx' is disabled when AVX is turned on. For SSE insns inherited
by AVX, we need this predicate to force VEX encoding or SSE legacy
encoding only.
For insns not inherited by AVX, we still use the previous predicates,
i.e. 'HasSSEx'. So far, these insns fall into the following
categories:
* SSE insns with MMX operands
* SSE insns with GPR/MEM operands only (xFENCE, PREFETCH, CLFLUSH,
CRC, and etc.)
* SSE4A insns.
* MMX insns.
* x87 insns added by SSE.
2 test cases are modified:
- test/CodeGen/X86/fast-isel-x86-64.ll
AVX code generation is different from SSE one. 'vcvtsi2sdq' cannot be
selected by fast-isel due to complicated pattern and fast-isel
fallback to materialize it from constant pool.
- test/CodeGen/X86/widen_load-1.ll
AVX code generation is different from SSE one after fixing SSE/AVX
inter-mixing. Exec-domain fixing prefers 'vmovapd' instead of
'vmovaps'.
llvm-svn: 162919
on X86 Atom. Some of our tests failed because the tail merging part of
the BranchFolding pass was creating new basic blocks which did not
contain live-in information. When the anti-dependency code in the Post-RA
scheduler ran, it would sometimes rename the register containing
the function return value because the fact that the return value was
live-in to the subsequent block had been lost. To fix this, it is necessary
to run the RegisterScavenging code in the BranchFolding pass.
This patch makes sure that the register scavenging code is invoked
in the X86 subtarget only when post-RA scheduling is being done.
Post RA scheduling in the X86 subtarget is only done for Atom.
This patch adds a new function to the TargetRegisterClass to control
whether or not live-ins should be preserved during branch folding.
This is necessary in order for the anti-dependency optimizations done
during the PostRASchedulerList pass to work properly when doing
Post-RA scheduling for the X86 in general and for the Intel Atom in particular.
The patch adds and invokes the new function trackLivenessAfterRegAlloc()
instead of using the existing requiresRegisterScavenging().
It changes BranchFolding.cpp to call trackLivenessAfterRegAlloc() instead of
requiresRegisterScavenging(). It changes the all the targets that
implemented requiresRegisterScavenging() to also implement
trackLivenessAfterRegAlloc().
It adds an assertion in the Post RA scheduler to make sure that post RA
liveness information is available when it is needed.
It changes the X86 break-anti-dependencies test to use –mcpu=atom, in order
to avoid running into the added assertion.
Finally, this patch restores the use of anti-dependency checking
(which was turned off temporarily for the 3.1 release) for
Intel Atom in the Post RA scheduler.
Patch by Andy Zhang!
Thanks to Jakob and Anton for their reviews.
llvm-svn: 155395
convert at least one client over to use them. Subsequent patches both to
LLVM and Clang will try to convert more people over to a common set of
predicates.
This round of predicates is focused on OS-categorization predicates.
llvm-svn: 149815
Adds an instruction itinerary to all x86 instructions, giving each a default latency of 1, using the InstrItinClass IIC_DEFAULT.
Sets specific latencies for Atom for the instructions in files X86InstrCMovSetCC.td, X86InstrArithmetic.td, X86InstrControl.td, and X86InstrShiftRotate.td. The Atom latencies for the remainder of the x86 instructions will be set in subsequent patches.
Adds a test to verify that the scheduler is working.
Also changes the scheduling preference to "Hybrid" for i386 Atom, while leaving x86_64 as ILP.
Patch by Preston Gurd!
llvm-svn: 149558
if (HasAVX)
X86SSELevel = NoMMXSSE;
This is so patterns that are predicated on hasSSE3, etc. would not be selected when avx is available. Instead, the AVX variant is selected.
However, this breaks instructions which do not have AVX variants.
The right way to fix this is for the SSE but not-AVX patterns to predicate on something like hasSSE3() && !hasAVX().
Then we can take out the hack in X86Subtarget.cpp. Patterns which do not have AVX variants do not need to change.
However, we need to audit all the patterns before we make the change. This patch is workaround that fixes one specific case,
the prefetch instructions. rdar://10538297
llvm-svn: 146163