curses.h). Finding these headers is next to impossible. For example, on
Debian systems libtinfo-dev provides the terminfo reading library we
want, but *not* term.h. For the header, you have to use libncurses-dev.
And libncursesw-dev provides a *different* term.h in a different
location!
These headers aren't worth it. We want two functions the signatures of
which are clearly spec'ed in sys-v and other documentation. Just declare
them ourselves and call them. This should fix some debian builders and
provide better support for "minimal" debian systems that do want color
autodetection.
llvm-svn: 188165
library for color support detection. This still will use a curses
library if that is all we have available on the system. This change
tries to use a smaller subset of the curses library, specifically the
subset that is on some systems split off into a separate library. For
example, if you install ncurses configured --with-tinfo, a 'libtinfo' is
install that provides just the terminfo querying functionality. That
library is now used instead of curses when it is available.
This happens to fix a build error on systems with that library because
when we tried to link ncurses into the binary, we didn't pull tinfo in
as well. =]
It should also provide an easy path for supporting the NetBSD
libterminfo library, but as I don't have access to a NetBSD system I'm
leaving adding that support to those folks.
llvm-svn: 188160
using it to detect whether or not a terminal supports colors. This
replaces a particularly egregious hack that merely compared the TERM
environment variable to "dumb". That doesn't really translate to
a reasonable experience for users that have actually ensured their
terminal's capabilities are accurately reflected.
This makes testing a terminal for color support somewhat more expensive,
but it is called very rarely anyways. The important fast path when the
output is being piped somewhere is already in place.
The global lock may seem excessive, but the spec for calling into curses
is *terrible*. The whole library is terrible, and I spent quite a bit of
time looking for a better way of doing this before convincing myself
that this was the fundamentally correct way to behave. The damage of the
curses library is very narrowly confined, and we continue to use raw
escape codes for actually manipulating the colors which is a much sane
system than directly using curses here (IMO).
If this causes trouble for folks, please let me know. I've tested it on
Linux and will watch the bots carefully. I've also worked to account for
the variances of curses interfaces that I could finde documentation for,
but that may not have been sufficient.
llvm-svn: 187874
This kind of simplification is sometimes useful, but in general it's not correct.
As GNU/kFreeBSD is an hybrid system, for kernel-related issues we want to match the
build definitions used for FreeBSD, whereas for userland-related issues we want to
match the definitions used for other systems with Glibc.
The current modification adjusts the build system so that they can be distinguished,
and explicitly adds GNU/kFreeBSD to the build checks in which it belongs.
Fixes bug #16444.
Patch by Robert Millan in the context of Debian.
llvm-svn: 185311
when building llvm. This saves quite a bit of time and space when
linking. Please report any problems via bugzilla.
Caveats:
a) This will only work on linux
b) This requires a fairly new binutils
c) This requires a fairly new gdb
llvm-svn: 184808
This patch wires up the SystemZ target in configure, so that it can now be
built using --enable-targets=systemz. It is not yet included in the default
build (--enable-targets=all); this will be done by a follow-up patch.
Patch by Richard Sandiford.
llvm-svn: 181208
The intended semantics mirror autoconf, where the user is able to
specify a host triple, but if it's left to the build system then
"config.guess" is invoked for the default.
This also renames the LLVM_HOSTTRIPLE define to LLVM_HOST_TRIPLE to
fit in with the style of the surrounding defines.
llvm-svn: 181112
to use -Wfoo instead of -Wno-foo. This works around a bug in some versions of
gcc, where it will silently accept an unknown -Wno-foo option, but will
generate an error for a compile which uses -Wno-foo if that compile also
triggers any warnings.
llvm-svn: 174770
Makefile.config.
This is implied at the bottom of the help text of configure (besides
CC/CXX/LDFLAGS, already passed to Makefile.config).
For backward compatibility, the values of CFLAGS and CXXFLAGS defaults
to empty, overriding the default values provided by autoconf (for
example, '-g -O2' when CC=gcc').
$(CPP) is not used by our makefiles. Therefore, the value of CPP is
not passed to Makefile.config, despite beeing mentioned by 'configure
--help'.
llvm-svn: 174313
catches uses of an extremely minor and widely-available C++ extension (which
every C++ compiler I could find supports, but EDG and Clang reject in strict
mode).
The diagnosed code pattern looks like this:
struct X {
union {
struct {
int a;
int b;
} S;
};
};
llvm-svn: 174103
This patch adds support for AArch64 (ARM's 64-bit architecture) to
LLVM in the "experimental" category. Currently, it won't be built
unless requested explicitly.
This initial commit should have support for:
+ Assembly of all scalar (i.e. non-NEON, non-Crypto) instructions
(except the late addition CRC instructions).
+ CodeGen features required for C++03 and C99.
+ Compilation for the "small" memory model: code+static data <
4GB.
+ Absolute and position-independent code.
+ GNU-style (i.e. "__thread") TLS.
+ Debugging information.
The principal omission, currently, is performance tuning.
This patch excludes the NEON support also reviewed due to an outbreak of
batshit insanity in our legal department. That will be committed soon bringing
the changes to precisely what has been approved.
Further reviews would be gratefully received.
llvm-svn: 174054
This simply fixes up quoting of macro invocations to appease newer versions of autotools.
http://llvm-reviews.chandlerc.com/D332
Signed-off-by: Saleem Abdulrasool <compnerd@compnerd.org>
llvm-svn: 173878
Some versions of gcc accept unsupported -W flags and run just fine if
there are no warnings, but die with an unsupported flag error if a
warning is encountered. gcc 4.3 and gcc 4.4 both exhibit this
behavior for -Wno-maybe-uninitialized. Therefore, if the flag check
for -Wno-maybe-uninitialized succeeds, only use
-Wno-maybe-uninitialized if we are using gcc version 4.7 or greater.
Use -Wno-uninitialized otherwise.
llvm-svn: 172543
If the compiler is gcc, disable variants of -Wuninitialized depending
on the gcc version. This gets a lot of false positive warnings out of
the build.
Generate a new configure for the gcc -Wno-uninitialized fix.
Pick up -Wno-uninitialized from configure
Add the option -Wno[-maybe]-uninitialized as determined by configure.
llvm-svn: 172006
Some linux distibutions (for example, Mageia 2, Fedora 17) ship Clang that is
essentially broken for the end user. Clang can not find or compile libstdc++
headers.
The issue is that our configure prefers clang over gcc, thus selecting a broken
Clang when a working GCC is available.
Now we detect this issue by compiling a simple program. If it does not
compile, configure stops with an error suggesting the user to select a
different compiler.
llvm-svn: 171975
wall time, user time, and system time since a process started.
For walltime, we currently use TimeValue's interface and a global
initializer to compute a close approximation of total process runtime.
For user time, this adds support for an somewhat more precise timing
mechanism -- clock_gettime with the CLOCK_PROCESS_CPUTIME_ID clock
selected.
For system time, we have to do a full getrusage call to extract the
system time from the OS. This is expensive but unavoidable.
In passing, clean up the implementation of the old APIs and fix some
latent bugs in the Windows code. This might have manifested on Windows
ARM systems or other systems with strange 64-bit integer behavior.
The old API for this both user time and system time simultaneously from
a single getrusage call. While this results in fewer system calls, it
also results in a lower precision user time and if only user time is
desired, it introduces a higher overhead. It may be worthwhile to switch
some of the pass timers to not track system time and directly track user
and wall time. The old API also tracked walltime in a confusing way --
it just set it to the current walltime rather than providing any measure
of wall time since the process started the way buth user and system time
are tracked. The new API is more consistent here.
The plan is to eventually implement these methods for a *child* process
by using the wait3(2) system call to populate an rusage struct
representing the whole subprocess execution. That way, after waiting on
a child process its stats will become accurate and cheap to query.
llvm-svn: 171551