The assertion falsely expected ranked memrefs only. Now both, ranked and
unranked memrefs are allowed.
Differential Revision: https://reviews.llvm.org/D88080
This reverts commit 385c3f43fc.
Test mlir/test/Pass:dynamic-pipeline-fail-on-parent.mlir.test fails
when run with ASAN:
ERROR: AddressSanitizer: stack-use-after-scope on address ...
Reviewed By: bkramer, pifon2a
Differential Revision: https://reviews.llvm.org/D88079
It's simpler to do this at codegen time than to do ad-hoc constant
folding of machine instructions in SIFoldOperands.
Differential Revision: https://reviews.llvm.org/D88028
The VPTBlock has been modified to track the 'global' state of the
VPR, as well as the state for each block. Each object now just holds
a list of instructions that makeup the block, while static structures
hold the predicate information. This enables global access for
querying how both a VPT block and individual instructions are
predicated. These changes now allow us, again, to handle more
complicated cases where multiple instructions build a predicate
and/or where the same predicate in used in multiple blocks.
It doesn't, however, get us back to before the tracking was 'fixed'
as some extra logic will be required to properly handle VPT
instructions. Currently a VPT could be effectively predicated because
of it's inputs, but the existing logic will not detect that and so
will refuse to perform the transformation. This can be seen in
remat-vctp.ll test where we still don't perform the transform.
Differential Revision: https://reviews.llvm.org/D87681
There can be Macros that are tagged with `modifiable`. Thus verifying
`canModifyAllDescendants` is not sufficient to avoid macros when deep
copying.
We think the `TokenBuffer` could inform us whether a `Token` comes from
a macro. We'll look into that when we can surface this information
easily, for instance in unit tests for `ComputeReplacements`.
Differential Revision: https://reviews.llvm.org/D88034
We have an issue with `getFullSymbolName`: it assumes that the symbol passed is
always in the `.symtab`, what is wrong. We might calculate and report a wrong index currently.
I've added a test case revealing that.
This patch adds the "symbol index" argument to `getFullSymbolName` signature,
what fixes the issue.
Differential revision: https://reviews.llvm.org/D87899
Remove the domain from the instructions and create a shouldInspect
helper for LowOverheadLoops which queries it or a vpr operand.
Differential Revision: https://reviews.llvm.org/D87900
When cross compiling with clang-cl, clang splits the INCLUDE env
variable around semicolons (clang/lib/Driver/ToolChains/MSVC.cpp,
MSVCToolChain::AddClangSystemIncludeArgs) and lld splits the
LIB variable similarly (lld/COFF/Driver.cpp,
LinkerDriver::addLibSearchPaths). Therefore, the consensus for
cross compilation with clang-cl and lld-link seems to be to use
semicolons, despite path lists normally being separated by colons
on unix and EnvPathSeparator being set to that.
Therefore, handle the LIB variable similarly in Clang, when
handling lib file arguments when driving linking via Clang.
This fixes commands like "clang-cl test.c -Fetest.exe kernel32.lib" in
a cross compilation setting. Normally, most users call (lld-)link
directly, but meson happens to use this command syntax for
has_function() tests.
Reapply: Change Program.h to define procid_t as ::pid_t. When included
in lldb/unittests/Host/NativeProcessProtocolTest.cpp, it is included
after an lldb namespace containing an lldb::pid_t typedef, followed
later by a "using namespace lldb;". Previously, Program.h wasn't
included in this translation unit, but now it ends up included
transitively from Process.h.
Differential Revision: https://reviews.llvm.org/D88002
* Introduce `TreeTest.cpp` to unit test `Tree.h`
* Add `generateAllTreesWithShape` to generating test cases
* Add tests for `findFirstLeaf` and `findLastLeaf`
* Fix implementations of `findFirstLeaf` and `findLastLeaf` that had
been broken when empty `Tree` were present.
Differential Revision: https://reviews.llvm.org/D87779
This ensures that required includes and libraries such as -lm that
were added earlier aren't overwritten.
Differential Revision: https://reviews.llvm.org/D88068
This prefered over find_package as find_dependency forwards the correct
parameters for QUIET and REQUIRED to find_package.
Differential Revision: https://reviews.llvm.org/D88069
Change the indexing map to iterate over the (b, x0, x1, z0, z1, q, k) instead of (b, x0, x1, k, q, z0, z1) to evaluate the convolution expression:
Y[b, x0, x1, k] = sum(W[z0, z1, q, k] * X[b, x0 + z0, x1 + z1, q], z0, z1, q)
This allows llvm auto vectorize to work and has better locality resulting significant performance improvments
Differential Revision: https://reviews.llvm.org/D87781
For relative symbols, add its offset when computing relocation value.
Also, warn on unsupported absolute symbols.
Differential Revision: https://reviews.llvm.org/D87407
Instead of performing a transformation, such pass yields a new pass pipeline
to run on the currently visited operation.
This feature can be used for example to implement a sub-pipeline that
would run only on an operation with specific attributes. Another example
would be to compute a cost model and dynamic schedule a pipeline based
on the result of this analysis.
Discussion: https://llvm.discourse.group/t/rfc-dynamic-pass-pipeline/1637
Reviewed By: silvas
Differential Revision: https://reviews.llvm.org/D86392
NPM passes just use the normal versions of these analyses instead.
Also pin any tests with -analyze to legacy PM.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D87857
There was a little thinko which meant when stopped in a frame with
debug information but whose CU didn't have any global variables we
report:
no debug info for frame <N>
This patch fixes that error message to say the intended:
no global variables in current compile unit
<rdar://problem/69086361>
This is the first in a series of patches that will adds a new processor trace plug-in to LLDB.
The idea for this first patch to to add the plug-in interface with simple commands for the trace files that can "load" and "dump" the trace information. We can test the functionality and ensure people are happy with the way things are done and how things are organized before moving on to adding more functionality.
Processor trace information can be view in a few different ways:
- post mortem where a trace is saved off that can be viewed later in the debugger
- gathered while a process is running and allow the user to step back in time (with no variables, memory or registers) to see how each thread arrived at where it is currently stopped.
This patch attempts to start with the first solution of loading a trace file after the fact. The idea is that we will use a JSON file to load the trace information. JSON allows us to specify information about the trace like:
- plug-in name in LLDB
- path to trace file
- shared library load information so we can re-create a target and symbolicate the information in the trace
- any other info that the trace plug-in will need to be able to successfully parse the trace information
- cpu type
- version info
- ???
A new "trace" command was added at the top level of the LLDB commmands:
- "trace load"
- "trace dump"
I did this because if we load trace information we don't need to have a process and we might end up creating a new target for the trace information that will become active. If anyone has any input on where this would be better suited, please let me know. Walter Erquinigo will end up filling in the Intel PT specific plug-in so that it works and is tested once we can agree that the direction of this patch is the correct one, so please feel free to chime in with ideas on comments!
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D85705
Updated file paths and function signatures in section
"Adding a new type".
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D88049
Extend the handling of memory intrinsics to also include non-
target-specific intrinsics, in particular masked loads and stores.
Invent "isHandledNonTargetIntrinsic" to distinguish between intrin-
sics that should be handled natively from intrinsics that can be
passed to TTI.
Add code that handles masked loads and stores and update the
testcase to reflect the results.
Differential Revision: https://reviews.llvm.org/D87340
This patch adds a utility based on SuperVectorizer to vectorize an
affine loop nest using a given vectorization strategy. This strategy allows
targeting specific loops for vectorization instead of relying of the
SuperVectorizer analysis to choose the right loops to vectorize.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D85869
SimplifyCFG's options should always be overridden by command line flags,
but they mistakenly weren't in the default constructor.
Reviewed By: ychen
Differential Revision: https://reviews.llvm.org/D87718
Scheduling information is of little value when they may disrupt the
pipeline. This patch allows omitting the scheduling information for CSR
instructions while still setting `SchedMachineModel::CompleteModel`. For
specific cases, any scheduling information added will be used by the
scheduler.
Differential revision: https://reviews.llvm.org/D85366
A few fixes while trying to figure out why tests are being skipped for arsenm:
- We check `$compiler -v`, but `-v` is `--verbose`, not `--version`. Use the long flag name.
- We check all lines matching `version ...`, but we should exit early for the first version string we see (which should be the main one). I'm not sure if this is the issue, but perhaps this is causing some users to skip some tests if another "version ..." is showing up later.
- Having `\.` in a python string is triggering pylint warnings, because it should be escaped as a regex string, e.g. `r'\.' However, `.` in a character class does not need to be escaped, as it matches only a literal `.` in that context.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D88051