Extend DummySyntheticProvider to actually use debug-info vended children as the source of information
Make Python synthetic children either be valid, or fallback to the dummy, like their C++ counterparts
This allows LLDB to actually stop bailing out upon encountering an invalid synthetic children provider front-end, and still displaying the non synthetized ivar info
llvm-svn: 192741
When debugging with the GDB remote in LLDB, LLDB uses special packets to discover the
registers on the remote server. When those packets aren't supported, LLDB doesn't
know what the registers look like. This checkin implements a setting that can be used
to specify a python file that contains the registers definitions. The setting is:
(lldb) settings set plugin.process.gdb-remote.target-definition-file /path/to/module.py
Inside module there should be a function:
def get_dynamic_setting(target, setting_name):
This dynamic setting function is handed the "target" which is a SBTarget, and the
"setting_name", which is the name of the dynamic setting to retrieve. For the GDB
remote target definition the setting name is 'gdb-server-target-definition'. The
return value is a dictionary that follows the same format as the OperatingSystem
plugins follow. I have checked in an example file that implements the x86_64 GDB
register set for people to see:
examples/python/x86_64_target_definition.py
This allows LLDB to debug to any archticture that is support and allows users to
define the registers contexts when the discovery packets (qRegisterInfo, qHostInfo)
are not supported by the remote GDB server.
A few benefits of doing this in Python:
1 - The dynamic register context was already supported in the OperatingSystem plug-in
2 - Register contexts can use all of the LLDB enumerations and definitions for things
like lldb::Format, lldb::Encoding, generic register numbers, invalid registers
numbers, etc.
3 - The code that generates the register context can use the program to calculate the
register context contents (like offsets, register numbers, and more)
4 - True dynamic detection could be used where variables and types could be read from
the target program itself in order to determine which registers are available since
the target is passed into the python function.
This is designed to be used instead of XML since it is more dynamic and code flow and
functions can be used to make the dictionary.
llvm-svn: 192646
This is implemented by means of a get_dynamic_setting(target, setting_name) function vended by the Python module, which can respond to arbitrary string names with dynamically constructed
settings objects (most likely, some of those that PythonDataObjects supports) for LLDB to parse
This needs to be hooked up to the debugger via some setting to allow users to specify which module will vend the information they want to supply
llvm-svn: 192628
Fixed Module::ResolveSymbolContextForAddress() to be able to also look in the SymbolVendor's SymbolFile's ObjectFile for a more meaningful symbol when a symbol lookup finds a synthetic symbol from the main object file. This will help lookups on MacOSX as the main executable might be stripped, but the dSYM file always has a full symbol table.
llvm-svn: 192510
Added a way to set hardware breakpoints from the "breakpoint set" command with the new "--hardware" option. Hardware breakpoints are not a request, they currently are a requirement. So when breakpoints are specified as hardware breakpoints, they might fail to be set when they are able to be resolved and should be used sparingly. This is currently hooked up for GDB remote debugging.
Linux and FreeBSD should quickly enable this feature if possible, or return an error for any breakpoints that are hardware breakpoint sites in the "virtual Error Process::EnableBreakpointSite (BreakpointSite *bp_site);" function.
llvm-svn: 192491
Just pass a Target* into ObjectFileELF::GetImageInfoAddress so that
it can do the extra dereference necessary on MIPS, instead of passing
a flag back to the caller.
Review: http://llvm-reviews.chandlerc.com/D1899
llvm-svn: 192469
MIPS's .dyanamic section is read-only. Instead of using DT_DEBUG for
the pointer to dyld information it uses a separate tag DT_MIPS_RLD_MAP
which points to storage in the read-write .rld_map section, which in
turn points to the dyld information.
Review: http://llvm-reviews.chandlerc.com/D1890
llvm-svn: 192408
Based on the POSIX x86_64 register context. This is sufficient for opening
a mips64 (big endian) core file. Subsequent changes will connect the
disassembler, dynamic loader support, ABI, etc.
Review: http://llvm-reviews.chandlerc.com/D1873
llvm-svn: 192335
ObjectFile::CopyData is used to copy a block of target memory to the
caller's buffer (e.g. for "memory read"). This should be a straight
memcpy, and not byte-swapped if the target and host have different
endianness.
Add a new DataExtractor::CopyData() method that performs this straight
copy and use it in ObjectFile::CopyData().
llvm-svn: 192323
- By default, the above function will wait for at least one event
- Set wait_always=false to make the function return immediately if the process is already stopped
llvm-svn: 192301
Implement SBTarget::CreateValueFromAddress() with a behavior equivalent to SBValue::CreateValueFromAddress()
(but without the need to grab an SBValue first just as a starting point to make up another SBValue out of whole cloth)
llvm-svn: 192239
Formats (as in "type format") are now included in categories
The only bit missing is caching formats along with synthetic children and summaries, which might be now desirable
llvm-svn: 192217
This radar extends the notion of one-liner summaries to automagically apply in a few interesting cases
More specifically, this checkin changes the printout of ValueObjects to print on one-line (as if type summary add -c had been applied) iff:
this ValueObject does not have a summary
its children have no synthetic children
its children are not a non-empty base class without a summary
its children do not have a summary that asks for children to show up
the aggregate length of all the names of all the children is <= 50 characters
you did not ask to see the types during a printout
your pointer depth is 0
This is meant to simplify the way LLDB shows data on screen for small structs and similarly compact data types (e.g. std::pair<int,int> anyone?)
Feedback is especially welcome on how the feature feels and corner cases where we should apply this printout and don't (or viceversa, we are applying it when we shouldn't be)
llvm-svn: 191996
that all clients use them explicitly. This will hopefully
prevent any future confusion where things get cast to types
we don't expect.
<rdar://problem/15146458>
llvm-svn: 191984
to be explicit, to prevent horrid things like
std::string a = ConstString("foo")
from taking the path ConstString -> bool -> char
-> std::string.
This fixes, among other things, ClangFunction.
<rdar://problem/15137989>
llvm-svn: 191934
DumpValueObject() 2.0
This checkin restores pre-Xcode5 functionality to the "po" (expr -O) command:
- expr now has a new --description-verbosity (-v) argument, which takes either compact or full as a value (-v is the same as -vfull)
When the full mode is on, "po" will show the extended output with type name, persistent variable name and value, as in
(lldb) expr -O -v -- foo
(id) $0 = 0x000000010010baf0 {
1 = 2;
2 = 3;
}
When -v is omitted, or -vcompact is passed, the Xcode5-style output will be shown, as in
(lldb) expr -O -- foo
{
1 = 2;
2 = 3;
}
- for a non-ObjectiveC object, LLDB will still try to retrieve a summary and/or value to display
(lldb) po 5
5
-v also works in this mode
(lldb) expr -O -vfull -- 5
(int) $4 = 5
On top of that, this is a major refactoring of the ValueObject printing code. The functionality is now factored into a ValueObjectPrinter class for easier maintenance in the future
DumpValueObject() was turned into an instance method ValueObject::Dump() which simply calls through to the printer code, Dump_Impl has been removed
Test case to follow
llvm-svn: 191694
line breakpoints past the prologue of functions so it can be shared between the
file & line breakpoint resolver, and the source pattern breakpoint resolver,
and then share it.
llvm-svn: 191478
not have breakpoints set on it inserted into code that does have a valid line number. So allow
that line number, and the ThreadPlanStepRange should just continue stepping over 0 line ranges
as if they had the same line number as whatever we were previously stepping through.
llvm-svn: 191477
Now that SBValues can be setup to ignore synthetic values, this is no longer necessary, and so m_suppress_synthetic_value can go away
Another Hack Bites the Dust
llvm-svn: 191338
to build out the symbol table as addresses are used, and implements
the mechanism for ELF to add stripped symbols from eh_frame.
Uses this mechanism to allow disassembly for addresses corresponding
to stripped symbols for ELF, and provide hooks to implement this for
PE COFF.
Also removes eSymbolContextTailCall in favor of an option for
ResolveSymbolContextForAddress for consistency with the documentation
for eSymbolContextEverything. Essentially, this is just an option for
interpreting the so_addr.
llvm-svn: 191307
Specifically, allows the unwinder to handle the case where sc.function
gets resolved with a pc that is one past the address range of the function
(consistent with a tail call). However, there is no matching symbol.
Adds eSymbolContextTailCall to provide callers with control over the scope
of symbol resolution and to allow ResolveSymbolContextForAddress to handle
tail calls since this routine is common to unwind and disassembly.
llvm-svn: 191102
- searches frames beginning from the current frame, stops when an equivalent context is found
- not using GetStackFrameCount() for performance reasons
- fixes TestInlineStepping (clang/gcc buildbots)
llvm-svn: 190868
for the frame is one past the address range of the calling function.
- Lowers the fix from RegisterContextLLDB for use with disassembly
- Fixes one of three issues in the disassembly test in TestInferiorAssert.py
Also adds documentation that explains the resolution depths and interface.
Note: This change affects the resolution scope for eSymbolContextFunction
without impacting the performance of eSymbolContextSymbol.
Thanks to Matt Kopec for his review.
llvm-svn: 190812
with prefer_file_cache == false. This is what we want to do when
the user is doing a disassemble command -- show the actual memory
contents in case the memory has been corrupted or something -- but
when we're profiling functions for stepping or unwinding
(ThreadPlanStepRange::GetInstructionsForAddress,
UnwindAssemblyInstEmulation::GetNonCallSiteUnwindP) we can read
__TEXT instructions directly out of the file, if it exists.
<rdar://problem/14397491>
llvm-svn: 190638
This allows the PC to be directly changed to a different line.
It's similar to the example python script in examples/python/jump.py, except implemented as a builtin.
Also this version will track the current function correctly even if the target line resolves to multiple addresses. (e.g. debugging a templated function)
llvm-svn: 190572
SVN r189964 provided a sample Python script to inspect unordered(multi){set|map} with synthetic children, contribued by Jared Grubb
This checkin converts that sample script to a C++ provider built into LLDB
A test case is also provided
llvm-svn: 190564
setting of the environment variable COMMAND_MODE. Changed the Platform::GetResumeCountForShell
to Platform::GetResumeCountForLaunchInfo, and check both the shell and in the case of
/bin/sh the environment as well.
llvm-svn: 190538
that /bin/sh re-exec's itself to /bin/bash, so it needs one more resume when you
are using it as the shell than /bin/bash did or you will stop at the start of your
program, rather than running it.
So I added a Platform API to get the number of resumes needed when launching with
a particular shell, and set the right values for Mac OS X.
<rdar://problem/14935282>
llvm-svn: 190381
/bin/sh is more portable, and all systems with /bin/bash are expected to
have /bin/sh as well, even if only a link to bash.
Review: http://llvm-reviews.chandlerc.com/D1576
llvm-svn: 189879
- mode_t is defined in <sys/types.h>
- reorganized S_* user rights into win32.h
- Use Host::Kill instead of kill
- Currently #ifdef functions using pread/pwrite.
llvm-svn: 189364
Since I renamed most of the LLVM Mach-O enums in r189314, I had to go fix
LLDB to use the new names. While I was here, I decided that a COFF
plugin really shouldn't be using Mach-O enums.
llvm-svn: 189316
Summary:
This merge brings in the improved 'platform' command that knows how to
interface with remote machines; that is, query OS/kernel information, push
and pull files, run shell commands, etc... and implementation for the new
communication packets that back that interface, at least on Darwin based
operating systems via the POSIXPlatform class. Linux support is coming soon.
Verified the test suite runs cleanly on Linux (x86_64), build OK on Mac OS
X Mountain Lion.
Additional improvements (not in the source SVN branch 'lldb-platform-work'):
- cmake build scripts for lldb-platform
- cleanup test suite
- documentation stub for qPlatform_RunCommand
- use log class instead of printf() directly
- reverted work-in-progress-looking changes from test/types/TestAbstract.py that work towards running the test suite remotely.
- add new logging category 'platform'
Reviewers: Matt Kopec, Greg Clayton
Review: http://llvm-reviews.chandlerc.com/D1493
llvm-svn: 189295
address.
When loading a dSYM, and the file addresses of the dSYM Sections are
different than the executable binary Sections' file addresses, the
debug info won't be remapped to the actual load addresses correctly.
This only happens with binaries on the in-memory shared cache binaries
where their File addresses have been set to their actual load address
(outside an offset value) whereas the original executable and dSYM
have 0-based File addresses.
I think this patch will not be activated for other cases -- this is
the only case we know of where the dSYM and the executable's File
addresses differ -- but if this causes other problems we can restrict
it more carefully.
<rdar://problem/12335086>
llvm-svn: 188532
LLDB needs in memory module load level settings to control how much information is read from memory when loading in memory modules. This change adds a new setting:
(lldb) settings set target.memory-module-load-level [minimal|partial|complete]
minimal will load only sections (no symbols, or function bounds via function starts or EH frame)
partial will load sections + bounds
complete will load sections + bounds + symbols
llvm-svn: 188246
- Immediates can be shown as hex (either Intel or MASM style)
- See TestSettings.py for usage examples
- Verified to cause no regressions on Linux x86_64 (Ubuntu 12.10)
Patch by Richard Mitton!
llvm-svn: 187921
Fixed a crasher when using memory threads where a thread is sticking around too long and was causing problems when it didn't have a thread plan.
llvm-svn: 187395
LLDB requires that the inferior process be stopped before, and remain
stopped during, certain accesses to process state.
Previously this was achieved with a POSIX rwlock which had a write lock
taken for the duration that the process was running, and released when
the process was stopped. Any access to process state was performed with
a read lock held.
However, POSIX requires that pthread_rwlock_unlock() be called from the
same thread as pthread_rwlock_wrlock(), and lldb needs to stop and start
the process from different threads. Violating this constraint is
technically undefined behaviour, although as it happens Linux and Darwin
result in the unlock proceeding in this case. FreeBSD follows POSIX
more strictly, and the unlock would fail, resulting in a hang later upon
the next attempt to take the lock.
All read lock consumers use ReadTryLock() and handle failure to obtain
the lock (typically by logging an error "process is running"). Thus,
instead of using the lock state itself to track the running state, this
change adds an explicit m_running flag. ReadTryLock tests the flag, and
if the process is not running it returns with the read lock held.
WriteLock and WriteTryLock are renamed to SetRunning and TrySetRunning,
and (if successful) they set m_running with the lock held. This way,
read consumers can determine if the process is running and act
appropriately, and write consumers are still held off from starting the
process if read consumers are active.
Note that with this change there are still some curious access patterns,
such as calling WriteUnlock / SetStopped twice in a row, and there's no
protection from multiple threads trying to simultaneously start the
process. In practice this does not seem to be a problem, and was
exposing other undefined POSIX behaviour prior to this change.
llvm-svn: 187377
Also move the logic to shorten thread names from linux/Host.cpp to a new
SetShortThreadName as both FreeBSD and Linux need the functionality.
llvm-svn: 187149
- ReadLocker constructors that take a lock
- Unconditional Lock::ReadLock and ReadLocker::Lock
(all consumers use TryLock)
- Make Unlock protected, as it has no external consumers
llvm-svn: 187147
and so the StackID changes with every step. Do so by checking the parent frame ID, and if it hasn't changed,
then we haven't stepped in.
rdar://problem/14516227
llvm-svn: 187094
ELF notes contain a 'name' field, which specifies a vendor who defines
the format of the note. Examples are 'FreeBSD' or 'GNU', or it may be
empty for generic notes.
Add a case for FreeBSD-specific notes, leaving Linux and GNU notes,
other vendor-specific notes, and generic notes to be handled by the
existing code for now.
Thanks to Samuel Jacob for reviewing and suggesting improvements.
llvm-svn: 186973
plan providers from a "ThreadPlan *" to a "lldb::ThreadPlanSP". That was needed to fix
a bug where the ThreadPlanStepInRange wasn't checking with its sub-plans to make sure they
succeed before trying to proceed further. If the sub-plan failed and as a result didn't make
any progress, you could end up retrying the same failing algorithm in an infinite loop.
<rdar://problem/14043602>
llvm-svn: 186618
Added a setting to control timeout for kdp response packets. While I was at it, I also added a way to control the response timeout for gdb-remote packets.
KDP defaults to 5 seconds, and GDB defaults to 1 second. These were the default values that were in the code prior to adding these settings.
(lldb) settings set plugin.process.gdb-remote.packet-timeout 10
(lldb) settings set plugin.process.kdp-remote.packet-timeout 10
llvm-svn: 186360
- MachO files now correctly extract the UUID all the time
- More file size and offset verification done for universal mach-o files to watch for truncated files
- ObjectContainerBSDArchive now supports enumerating all objects in BSD archives (.a files)
- lldb_private::Module() can not be properly constructed using a ModuleSpec for a .o file in a .a file
- The BSD archive plug-in shares its cache for GetModuleSpecifications() and the create callback
- Improved printing for ModuleSpec objects
llvm-svn: 186211
A long time ago we start with clang types that were created by the symbol files and there were many functions in lldb_private::ClangASTContext that helped. Later we create ClangASTType which contains a clang::ASTContext and an opauque QualType, but we didn't switch over to fully using it. There were a lot of places where we would pass around a raw clang_type_t and also pass along a clang::ASTContext separately. This left room for error.
This checkin change all type code over to use ClangASTType everywhere and I cleaned up the interfaces quite a bit. Any code that was in ClangASTContext that was type related, was moved over into ClangASTType. All code that used these types was switched over to use all of the new goodness.
llvm-svn: 186130
- ObjectFile::GetSymtab() and ObjectFile::ClearSymtab() no longer takes any flags
- Module coordinates with the object files and contain a unified section list so that object file and symbol file can share sections when they need to, yet contain their own sections.
Other cleanups:
- Fixed Symbol::GetByteSize() to not have the symbol table compute the byte sizes on the fly
- Modified the ObjectFileMachO class to compute symbol sizes all at once efficiently
- Modified the Symtab class to store a file address lookup table for more efficient lookups
- Removed Section::Finalize() and SectionList::Finalize() as they did nothing
- Improved performance of the detection of symbol files that have debug maps by excluding stripped files and core files, debug files, object files and stubs
- Added the ability to tell if an ObjectFile has been stripped with ObjectFile::IsStripped() (used this for the above performance improvement)
llvm-svn: 185990
There are two new classes:
lldb::SBModuleSpec
lldb::SBModuleSpecList
The SBModuleSpec wraps up a lldb_private::ModuleSpec, and SBModuleSpecList wraps up a lldb_private::ModuleSpecList.
llvm-svn: 185877
The build system is currently miss-identifying GNU/kFreeBSD as FreeBSD.
This kind of simplification is sometimes useful, but in general it's not correct.
As GNU/kFreeBSD is an hybrid system, for kernel-related issues we want to match the
build definitions used for FreeBSD, whereas for userland-related issues we want to
match the definitions used for other systems with Glibc.
The current modification adjusts the build system so that they can be distinguished,
and explicitly adds GNU/kFreeBSD to the build checks in which it belongs.
Fixes bug #16446.
Patch by Robert Millan in the context of Debian.
llvm-svn: 185313
been suitable for preparing a single IR function
for operation in the target. However, using blocks
and lambdas creates other IR functions that also
need to be processed.
I have audited IRForTarget to make it process
multiple functions. Where IRForTarget would add
new instructions at the beginning of the main
expression function, it now adds them on-demand
in the function where they are needed. This is
enabled by a system of FunctionValueCaches, which
invoke a lambda to create or derive the values as
needed, or report the result of that lambda if it
has already been called for the given function.
<rdar://problem/14180236>
llvm-svn: 185224
bother checking if a region is safe to use. In
cases where regions need to be synthesized rather
than properly allocated, the memory reads required
to determine whether the area is used are
- insufficient, because intermediate locations
could be in use, and
- unsafe, because on some platforms reading from
memory can trigger events.
All this only makes a difference on platforms
where memory allocation in the target is impossible.
Behavior on platforms where it is possible should
stay the same.
<rdar://problem/14023970>
llvm-svn: 185046
The semi-unofficial way of returning a status from a Python command was to return a string (e.g. return "no such variable was found") that LLDB would pick as a clue of an error having happened
This checkin changes that:
- SBCommandReturnObject now exports a SetError() call, which can take an SBError or a plain C-string
- script commands now drop any return value and expect the SBCommandReturnObject ("return object") to be filled in appropriately - if you do nothing, a success will be assumed
If your commands were relying on returning a value and having LLDB pick that up as an error, please change your commands to SetError() through the return object or expect changes in behavior
llvm-svn: 184893
Made sure that temporary object created from HarmonizeThreadIdsForProfileData() doesn’t get passed around without creating an object first.
Reviewed by Greg
llvm-svn: 184769
Specifically, the ${target ${process ${thread and ${frame specifiers have been extended to allow a subkeyword .script:<fctName> (e.g. ${frame.script:FooFunction})
The functions are prototyped as
def FooFunction(Object,unused)
where object is of the respective SB-type (SBTarget for target.script, ... and so on)
This has not been implemented for ${var because it would be akin to a Python summary which is already well-defined in LLDB
llvm-svn: 184500
dematerialization of registers that caused
conditional breakpoint expressions not to
work properly. Also added a testcase.
<rdar://problem/14129252>
llvm-svn: 184451
The script was able to point out and save 40 bytes in each lldb_private::Section by being very careful where we need to have virtual destructors and also by re-ordering members.
llvm-svn: 184364
//------------------------------------------------------------------
/// Get all types matching \a type_mask from debug info in this
/// module.
///
/// @param[in] type_mask
/// A bitfield that consists of one or more bits logically OR'ed
/// together from the lldb::TypeClass enumeration. This allows
/// you to request only structure types, or only class, struct
/// and union types. Passing in lldb::eTypeClassAny will return
/// all types found in the debug information for this module.
///
/// @return
/// A list of types in this module that match \a type_mask
//------------------------------------------------------------------
lldb::SBTypeList
SBModule::GetTypes (uint32_t type_mask)
//------------------------------------------------------------------
/// Get all types matching \a type_mask from debug info in this
/// compile unit.
///
/// @param[in] type_mask
/// A bitfield that consists of one or more bits logically OR'ed
/// together from the lldb::TypeClass enumeration. This allows
/// you to request only structure types, or only class, struct
/// and union types. Passing in lldb::eTypeClassAny will return
/// all types found in the debug information for this compile
/// unit.
///
/// @return
/// A list of types in this compile unit that match \a type_mask
//------------------------------------------------------------------
lldb::SBTypeList
SBCompileUnit::GetTypes (uint32_t type_mask = lldb::eTypeClassAny);
This lets you request types by filling out a mask that contains one or more bits from the lldb::TypeClass enumerations, so you can only get the types you really want.
llvm-svn: 184251
Modifying our data formatters matching algorithm to ensure that "const X*" is treated as equivalent to "X*"
Also, a couple improvements to the "lldb types" logging
llvm-svn: 184215
Only add the — (double dash) separator to a command syntax if it has any options to be separated from arguments
Also remove the unused Translate() method from CommandObject
llvm-svn: 184163
This is a rewrite of the command history facility of LLDB
It takes the history management out of the CommandInterpreter into its own CommandHistory class
It reimplements the command history command to allow more combinations of options to work correctly (e.g. com hist -c 1 -s 5)
It adds a new --wipe (-w) option to command history to allow clearing the history on demand
It extends the lldbtest runCmd: and expect: methods to allow adding commands to history if need be
It adds a test case for the reimplemented facility
llvm-svn: 184140
If you type help command <word> <word> <word> <missingSubCommand> (e.g. help script import or help type summary fake), you will get help on the deepest matched command word (i.e. script or type summary in the examples)
Also, reworked the logic for commands to produce their help to make it more object-oriented
llvm-svn: 183822
325,000 breakpoints for running "breakpoint set --func-regex ." on lldb itself (after hitting a breakpoint at main so that LLDB.framework is loaded) used to take up to an hour to set, now we are down under a minute. With warm file caches, we are at 40 seconds, and that is with setting 325,000 breakpoint through the GDB remote API. Linux and the native debuggers might be faster. I haven't timed what how much is debug info parsing and how much is the protocol traffic to/from GDB remote.
That there were many performance issues. Most of them were due to storing breakpoints in the wrong data structures, or using the wrong iterators to traverse the lists, traversing the lists in inefficient ways, and not optimizing certain function name lookups/symbol merges correctly.
Debugging after that is also now very efficient. There were issues with replacing the breakpoint opcodes in memory that was read, and those routines were also fixed.
llvm-svn: 183820
Modified the test programs to use floating point constants that always will display correctly. We had some numbers that were being rounded, and now that we are using clang, we no longer round them and we get more correct results.
llvm-svn: 183792
Adding a new setting interpreter.stop-command-source-on-error that dictates a default behavior for whether command source should stop upon hitting an error
You can still override the setting for each individual invocation with the usual -e setting
llvm-svn: 183719
Add support for half-floats, as specified by IEEE-754-2008
With this checkin, you can now say:
(lldb) x/7hf foo
to read 7 half-floats at address foo
llvm-svn: 183716
condition in two different processes (with the
same target) could cause crashes. Now the breakpoint
condition is always evaluated (and possibly parsed)
by one thread at a time.
<rdar://problem/14083737>
llvm-svn: 183440
Two things:
1) fixing a bug where memory read was not clearing the m_force flag after it was passed, so that subsequent memory reads would not need to be forced even if over boundary
2) adding a setting target.max-memory-read-size that you can set instead of the hardcoded 1024 bytes limit we had before
llvm-svn: 183276
LLDB API versioning
This checkin makes the LLDB API versioned
We are starting at version 1.0 and will then revise and update the API from there
Further details:
API versioning
---------------------------------
The LLDB API is versioned independently of the LLDB source base
Our API version numbers are composed of a major and a minor number
The major number means a complete and stable revision of the API. Major numbers are compatibility breakers
(i.e. when we change the API major number, there is no promise of compatibility with the previous major version
and we are free to remove and/or change any APIs)
Minor numbers are a work-in-progress evolution of the API. APIs will not be removed or changed across minor versions
(minors do not break compatibility). However, we can deprecate APIs in minor versions or add new APIs in minor versions
A deprecated API is supposedly going to be removed in the next major version and will generate a warning if used
APIs we add in minor versions will not be removed (at least until the following major) but they might theoretically be deprecated
in a following minor version
Users are discouraged from using the LLDB version number to test for API features and should instead use the API version checking
as discussed below
API version checking
---------------------------------
You can (optionally) sign into an API version checking feature
To do so you need to define three macros:
LLDB_API_CHECK_VERSIONING - define to any value (or no value)
LLDB_API_MAJOR_VERSION_WANTED - which major version of the LLDB API you are targeting
LLDB_API_MINOR_VERSION_WANTED - which minor version of the LLDB API you are targeting
If these macros exist - LLDB will enable version checking of the public API
If LLDB_API_MAJOR_VERSION is not equal to LLDB_API_MAJOR_VERSION_WANTED we will immediately halt your compilation with an error
This is by design, since we do not make any promise of compatibility across major versions - if you really want to test your luck, disable the versioning altogether
If the major version test passes, you have signed up for a specific minor version of the API
Whenever we add or deprecate an API in a minor version, we will mark it with either
LLDB_API_NEW_IN_DOT_x - this API is new in LLDB .x
LLDB_API_DEPRECATED_IN_DOT_x - this API is deprecated as of .x
If you are using an API new in DOT_x
if LLDB_API_MINOR_VERSION_WANTED >= x then all is well, else you will get a compilation error
This is meant to prevent you from using APIs that are newer than whatever LLDB you want to target
If you are using an API deprecated in DOT_x
if LLDB_API_MINOR_VERSION_WANTED >= x then you will get a compilation warning, else all is well
This is meant to let you know that you are using an API that is deprecated and might go away
Caveats
---------------------------------
Version checking only works on clang on OSX - you will get an error if you try to enable it on any other OS/compiler
If you want to enable version checking on other platforms, you will need to define appropriate implementations for
LLDB_API_IMPL_DEPRECATED and LLDB_API_IMPL_TOONEW and any other infrastructure your compiler needs for this purpose
We have no deprecation-as-error mode
There is no support for API versioning in Python
We reserve to use macros whose names begin with LLDB_API_ and you should not use them in your source code as they might conflict
with present or future macro names we are using to implement versioning
For API implementors:
If you need to add a new public API call, please remember to add the LLDB_API_NEW_IN_DOT_x marker in the header file
and when you are done with adding stuff, to also update LLDB_API_MINOR_VERSION
If you want to remove a function, deprecate it first, by using LLDB_API_DEPRECATED_IN_DOT_x
and when you are done with deprecating stuff, to also update LLDB_API_MINOR_VERSION
A new major version (LLDB_API_MAJOR_VERSION++) is your only chance to remove and/or change API calls
but is probably quite a big deal and you might want to consider deprecating the existing calls for a while
before doing your changes
A couple more caveats:
Currently, the lldb-tool does NOT use the version checking feature. It would be a nice future improvement to make it do that, once we have proper version checking on other OSs
APIs marked as deprecated by a comment in the source are still deprecated just that way. A good purpose for API 1.1 might be to deprecate them with appropriate markers
llvm-svn: 183244
Fixing an issue where formats would not propagate from parents to children in all cases
Details follow:
an SBValue has children and those are fetched along with their values
Now, one calls SBValue::SetFormat() on the parent
Technically, the format choices should propagate onto the children (see ValueObject::GetFormat())
But if the children values are already fetched, they won't notice the format change and won't update themselves
This commit fixes that by making ValueObject::GetValueAsCString() check if any format change intervened from the previous call to the current one
A test case is also added
llvm-svn: 183030
Fixed performance issues that arose after changing SBTarget, SBProcess, SBThread and SBFrame over to using a std::shared_ptr to a ExecutionContextRef. The ExecutionContextRef doesn't store a std::weak_ptr to a stack frame because stack frames often get replaced with new version, so it held onto a StackID object that would allow us to ask the thread each time for the frame for the StackID. The linear function was too slow for large recursive stacks. We also fixed an issue where anytime the std::shared_ptr<ExecutionContextRef> in any SBTarget, SBProcess, SBThread objects was turned into an ExecutionContext object, it would try to resolve all items in the ExecutionContext which are shared pointers. Even if the StackID in the ExecutionContextRef was invalid, it was looking through all frames in every thread. This causes a lot of unnecessary frame accesses.
llvm-svn: 182627
Which means "platform process list" should work and list the architecture.
We are now parsing the elf build-id if it exists, which should allow us to load stripped symbols (looking at that next).
llvm-svn: 182610
settings set use-color [false|true]
settings set prompt "${ansi.bold}${ansi.fg.green}(lldb)${ansi.normal} "
also "--no-use-colors" on the command prompt
llvm-svn: 182609
removed the bitfields. This should be conforming
C++11, though, cf. C++03 9.6(3):
"
A bit-field shall have integral or enumeration
type (3.9.1).
"
llvm-svn: 182545
Added logging for the OS plug-in python objects in OperatingSystemPython so we can see the python dictionary returned from the plug-in when logging is enabled.
llvm-svn: 182530
live as long as they needed to. This led to
equality tests involving persistent variables
often failing or succeeding when they had no
business doing so.
To do this, I introduced the ability for a
memory allocation to "leak" - that is, to
persist in the process beyond the lifetime of
the expression. Hand-declared persistent
variables do this now.
<rdar://problem/13956311>
llvm-svn: 182528
Yet another implementation of the python in dSYM autoload :)
This time we are going with a ternary setting:
true - load, do not warn
false - do not load, do not warn
warn - do not load, warn (default)
llvm-svn: 182414
There are two settings:
target.load-script-from-symbol-file is a boolean that says load or no load (default: false)
target.warn-on-script-from-symbol-file is also a boolean, it says whether you want to be warned when a script file is not loaded due to security (default: true)
the auto loading on change for target.load-script-from-symbol-file is preserved
llvm-svn: 182336
This changes the setting target.load-script-from-symbol-file to be a ternary enum value:
default (the default value) will NOT load the script files but will issue a warning suggesting workarounds
yes will load the script files
no will not load the script files AND will NOT issue any warning
if you change the setting value from default to yes, that will then cause the script files to be loaded
(the assumption is you didn't know about the setting, got a warning, and quickly want to remedy it)
if you have a settings set command for this in your lldbinit file, be sure to change "true" or "false" into an appropriate "yes" or "no" value
llvm-svn: 182323
Name matching was working inconsistently across many places in LLDB. Anyone doing name lookups where you want to look for all types of names should used "eFunctionNameTypeAuto" as the sole name type mask. This will ensure that we get consistent "lookup function by name" results. We had many function calls using as mask like "eFunctionNameTypeBase | eFunctionNameTypeFull | eFunctionNameTypeMethod | eFunctionNameTypeSelector". This was due to the function lookup by name evolving over time, but as it stands today, use eFunctionNameTypeAuto when you want general name lookups. Either ModuleList::FindFunctions() or Module::FindFunctions() will figure out the right kinds of names to lookup and remove the "eFunctionNameTypeAuto" and replace it with the exact subset of what the name can be.
This checkin also changes eFunctionNameTypeAny over to use eFunctionNameTypeAuto to reflect this.
llvm-svn: 182179
"source list -n <func>" can now show more than one location that matches a function name. It will unique multiple of the same source locations so they don't get displayed. It also handles inline functions correctly.
llvm-svn: 182067
regions that aren't actually allocated in the
process. This cache is used by the expression
parser if the underlying process doesn't support
memory allocation, to avoid needless repeated
searches for unused address ranges.
Also fixed a silly bug in IRMemoryMap where it
would continue searching even after it found a
valid region.
<rdar://problem/13866629>
llvm-svn: 182028
process StopLocker (if there is a process) before it will hand out SBValues. We were doing this in
an ad hoc fashion previously, and then playing whack-a-mole whenever we found a place where we should
have been doing this but weren't. Really, it doesn't make sense to be poking at SBValues when the target
is running, the dynamic and synthetic values can't really be computed, and the underlying memory may be
incoherent.
<rdar://problem/13819378> Sometimes when stepping fast, my inferior is killed by debugserver
llvm-svn: 181863
- add IsVirtualStep() virtual function to ThreadPlan, and implement it for
ThreadPlanStepInRange
- make GetPrivateStopReason query the current thread plan for a virtual stop to
decide if the current stop reason needs to be preserved
- remove extra check for an existing process in GetPrivateStopReason
llvm-svn: 181795
Provide a mechanism through which users can disable loading the Python scripts from dSYM files
This relies on a target setting: target.load-script-from-symbol-file which defaults to false ("do NOT load the script")
You need to set it to true before creating your target (or in your lldbinit file if you constantly rely on this feature) to allow the scripts to load
llvm-svn: 181709
Don't want about being unable to find a needed objective-c runtime
function when we're core file debugging and can't jit anything
anyway. Don't warn when quitting a debug session on a core file,
the program state can be reconstructed by re-running lldb on the
same core file again.
llvm-svn: 181653
Avoid a deadlock when using the OperatingSystemPython code and typing "process interrupt". There was a possible lock inversion between the target API lock and the process' thread list lock due to code trying to discard the thread list. This was fixed by adding a boolean to Process::Halt() that indicates if the thread plans should be discarded and doing it in the private state thread when we process the stopped state.
llvm-svn: 181651
<rdar://problem/13594769>
Main changes in this patch include:
- cleanup plug-in interface and use ConstStrings for plug-in names
- Modfiied the BSD Archive plug-in to be able to pick out the correct .o file when .a files contain multiple .o files with the same name by using the timestamp
- Modified SymbolFileDWARFDebugMap to properly verify the timestamp on .o files it loads to ensure we don't load updated .o files and cause problems when debugging
The plug-in interface changes:
Modified the lldb_private::PluginInterface class that all plug-ins inherit from:
Changed:
virtual const char * GetPluginName() = 0;
To:
virtual ConstString GetPluginName() = 0;
Removed:
virtual const char * GetShortPluginName() = 0;
- Fixed up all plug-in to adhere to the new interface and to return lldb_private::ConstString values for the plug-in names.
- Fixed all plug-ins to return simple names with no prefixes. Some plug-ins had prefixes and most ones didn't, so now they all don't have prefixed names, just simple names like "linux", "gdb-remote", etc.
llvm-svn: 181631
This re-submission of this patch fixes a problem where the code sometimes caused a deadlock. The Process::SetPrivateState method was locking the Process::m_private_state variable and then later calling ThreadList::DidStop, which locks the ThreadList mutex. Other methods in ThreadList which were being called from other threads lock the ThreadList mutex and then call Process::GetPrivateState which locks the Process::m_private_state mutex. To avoid deadlocks, Process::SetPrivateState now locks the ThreadList mutex before locking the Process::m_private_state mutex.
llvm-svn: 181609
namespace lldb_private {
class Thread
{
virtual lldb::StopInfoSP
GetPrivateStopReason() = 0;
};
}
To not be virtual. The lldb_private::Thread now handles the correct caching and will call a new pure virtual function:
namespace lldb_private {
class Thread
{
virtual bool
CalculateStopInfo() = 0;
}
}
This function must be overridden by thead lldb_private::Thread subclass and the only thing it needs to do is to set the Thread::StopInfo() with the current stop reason and return true, or return false if there is no stop reason. The lldb_private::Thread class will take care of calling this function only when it is required. This allows lldb_private::Thread subclasses to be a bit simpler and not all need to duplicate the cache and invalidation settings.
Also renamed:
lldb::StopInfoSP
lldb_private::Thread::GetPrivateStopReason();
To:
lldb::StopInfoSP
lldb_private::Thread::GetPrivateStopInfo();
Also cleaned up a case where the ThreadPlanStepOverBreakpoint might not re-set its breakpoint if the thread disappears (which was happening due to a bug when using the OperatingSystem plug-ins with memory threads and real threads).
llvm-svn: 181501
This commit changes the ${function.name-with-args} prompt keyword to also tackle structs
Previously, since aggregates have no values, this would show up as foo=(null)
This checkin changes that to instead print foo=(Foo at 0x123) (i.e. typename at address)
There are other potential choices here (summary, one-liner printout of all members, ...) and I would love to hear feedback about better options, if any
llvm-svn: 181462
- Played with the current dual run lock implementation for a few days, noticed
no regressions, so enabling in trunk so we see if any problems are detected
by buildbots.
llvm-svn: 181446
value. This fixes problems, for instance, with the StepRange plans, where they know that
they explained the stop because they were at their "run to here" breakpoint, then deleted
that breakpoint, so when they got asked again, doh! I had done this for a couple of plans
in an ad hoc fashion, this just formalizes it.
Also add a "ResumeRequested" in Process so that the code in the completion handlers can
tell the ShouldStop logic they want to resume rather than just directly resuming. That allows
us to handle resuming in a more controlled fashion.
Also, SetPublicState can take a "restarted" flag, so that it doesn't drop the run lock when
the target was immediately restarted.
--This line, and those below , will be ignored--
M test/lang/objc/objc-dynamic-value/TestObjCDynamicValue.py
M include/lldb/Target/ThreadList.h
M include/lldb/Target/ThreadPlanStepOut.h
M include/lldb/Target/Thread.h
M include/lldb/Target/ThreadPlanBase.h
M include/lldb/Target/ThreadPlanStepThrough.h
M include/lldb/Target/ThreadPlanStepInstruction.h
M include/lldb/Target/ThreadPlanStepInRange.h
M include/lldb/Target/ThreadPlanStepOverBreakpoint.h
M include/lldb/Target/ThreadPlanStepUntil.h
M include/lldb/Target/StopInfo.h
M include/lldb/Target/Process.h
M include/lldb/Target/ThreadPlanRunToAddress.h
M include/lldb/Target/ThreadPlan.h
M include/lldb/Target/ThreadPlanCallFunction.h
M include/lldb/Target/ThreadPlanStepOverRange.h
M source/Plugins/LanguageRuntime/ObjC/AppleObjCRuntime/AppleThreadPlanStepThroughObjCTrampoline.h
M source/Plugins/LanguageRuntime/ObjC/AppleObjCRuntime/AppleThreadPlanStepThroughObjCTrampoline.cpp
M source/Target/StopInfo.cpp
M source/Target/Process.cpp
M source/Target/ThreadPlanRunToAddress.cpp
M source/Target/ThreadPlan.cpp
M source/Target/ThreadPlanCallFunction.cpp
M source/Target/ThreadPlanStepOverRange.cpp
M source/Target/ThreadList.cpp
M source/Target/ThreadPlanStepOut.cpp
M source/Target/Thread.cpp
M source/Target/ThreadPlanBase.cpp
M source/Target/ThreadPlanStepThrough.cpp
M source/Target/ThreadPlanStepInstruction.cpp
M source/Target/ThreadPlanStepInRange.cpp
M source/Target/ThreadPlanStepOverBreakpoint.cpp
M source/Target/ThreadPlanStepUntil.cpp
M lldb.xcodeproj/xcshareddata/xcschemes/Run Testsuite.xcscheme
llvm-svn: 181381
while we develop a better understanding of how to manage the thread lists in a platform-independant fashion.
Reviewed by: Daniel Malea
llvm-svn: 181323
Make a summary format for libc++ STL containers that shows the number of items as before, but also shows the pointer value for pointer-to-container
llvm-svn: 181236
This checkin aims to fix this. The process now has two thread lists: a real thread list for threads that are created by the lldb_private::Process subclass, and the user visible threads. The user visible threads are the same as the real threas when no OS plug-in in used. But when an OS plug-in is used, the user thread can be a combination of real and "memory" threads. Real threads can be placed inside of memory threads so that a thread appears to be different, but is still controlled by the actual real thread. When the thread list needs updating, the lldb_private::Process class will call the: lldb_private::Process::UpdateThreadList() function with the old real thread list, and the function is expected to fill in the new real thread list with the current state of the process. After this function, the process will check if there is an OS plug-in being used, and if so, it will give the old user thread list, the new real thread list and the OS plug-in will create the new user thread list from both of these lists. If there is no OS plug-in, the real thread list is the user thread list.
These changes keep the lldb_private::Process subclasses clean and no changes are required.
llvm-svn: 181091
Most important was a new[] + delete mismatch in ScanFormatDescriptor()
and a couple of possible memory leaks in FileSpec::EnumerateDirectory().
llvm-svn: 181080
SWIG is smart enough to recognize that C++ operators == and != mean __eq__ and __ne__ in Python and do the appropriate translation
But it is not smart enough to recognize that mySBObject == None should return False instead of erroring out
The %pythoncode blocks are meant to provide those extra smarts (and they play some SWIG&Python magic to find the right function to call behind the scenes with no risk of typos :-)
Lastly, SBBreakpoint provides an == but never provided a != operator - common courtesy is to provide both
llvm-svn: 180987
<rdar://problem/13723772>
Modified the lldb_private::Thread to work much better with the OperatingSystem plug-ins. Operating system plug-ins can now return have a "core" key/value pair in each thread dictionary for the OperatingSystemPython plug-ins which allows the core threads to be contained with memory threads. It also allows these memory threads to be stepped, resumed, and controlled just as if they were the actual backing threads themselves.
A few things are introduced:
- lldb_private::Thread now has a GetProtocolID() method which returns the thread protocol ID for a given thread. The protocol ID (Thread::GetProtocolID()) is usually the same as the thread id (Thread::GetID()), but it can differ when a memory thread has its own id, but is backed by an actual API thread.
- Cleaned up the Thread::WillResume() code to do the mandatory parts in Thread::ShouldResume(), and let the thread subclasses override the Thread::WillResume() which is now just a notification.
- Cleaned up ClearStackFrames() implementations so that fewer thread subclasses needed to override them
- Changed the POSIXThread class a bit since it overrode Thread::WillResume(). It is doing the wrong thing by calling "Thread::SetResumeState()" on its own, this shouldn't be done by thread subclasses, but the current code might rely on it so I left it in with a TODO comment with an explanation.
llvm-svn: 180886
Enabling LLDB to write to variables that are stored in registers
Previously, this would not work since the Value's Context loses the notion of the data being in a register
We now store an "original" context that comes out of DWARF parsing, and use that context's data when attempting a write
llvm-svn: 180803
std::string
Module::GetSpecificationDescription () const;
This returns the module as "/usr/lib/libfoo.dylib" for normal files (calls "std::string FileSpec::GetPath()" on m_file) but it also might include the object name in case the module is for a .o file in a BSD archive ("/usr/lib/libfoo.a(bar.o)"). Cleaned up necessary logging code to use it.
llvm-svn: 180717
with directories, without increasing the size of the FileSpec object.
GetPath() returns a std::string of the full pathname of the file.
IsDirectory(), IsPipe(), IsRegularFile(), IsSocket(), and IsSymbolicLink()
can be used instead of getting the FileType() and comparing it to an enum.
Update PlatformDarwinKernel to use these new methods.
llvm-svn: 180704
mostly related to management of the stack frame
for the interpreter.
- First, if the expression can be interpreted,
allocate the stack frame in the target process
(to make sure pointers are valid) but only
read/write to the copy in the host's memory.
- Second, keep the memory allocations for the
stack frame and the materialized struct as
member variables of ClangUserExpression. This
avoids memory allocations and deallocations
each time the expression runs.
<rdar://problem/13043685>
llvm-svn: 180664
There is a new static ObjectFile function you can call:
size_t
ObjectFile::GetModuleSpecifications (const FileSpec &file,
lldb::offset_t file_offset,
ModuleSpecList &specs)
This will fill in "specs" which the details of all the module specs (file + arch + UUID (if there is one) + object name (for BSD archive objects eventually) + file offset to the object in question).
This helps us when a user specifies a file that contains a single architecture, and also helps us when we are given a debug symbol file (like a dSYM file on MacOSX) that contains one or more architectures and we need to be able to match it up to an existing Module that has no debug info.
llvm-svn: 180224
not find multiple functions with the same name but
different types. Now we keep track of what types
we've already reported for a function and only elide
functions if we've already reported a conflicting
one.
Also added a test case.
<rdar://problem/11367837>
llvm-svn: 180167