Summary:
Previously the ABI plugin exposed some "register infos" and the
gdb-remote code used those to fill in the missing bits. Now, the
"filling in" code is in the ABI plugin itself, and the gdb-remote code
just invokes that.
The motivation for this is two-fold:
a) the "augmentation" logic is useful outside of process gdb-remote. For
instance, it would allow us to avoid repeating the register number
definitions in minidump code.
b) It gives more implementation freedom to the ABI classes. Now that
these "register infos" are essentially implementation details, classes
can use other methods to obtain dwarf/eh_frame register numbers -- for
instance they can consult llvm MC layer.
Since the augmentation code was not currently tested anywhere, I took
the opportunity to create a simple test for it.
Reviewers: jasonmolenda, clayborg, tatyana-krasnukha
Subscribers: aprantl, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D70906
Summary:
I was recently surprised to learn that there is a total of 2 (two) users
of the register info definitions contained in the ABI plugins. Yet, the
defitions themselves span nearly 10kLOC.
The two users are:
- dwarf expression pretty printer
- the mechanism for augmenting the register info definitions obtained
over gdb-remote protocol (AugmentRegisterInfoViaABI)
Both of these uses need the DWARF an EH register numbers, which is
information that is already available in LLVM. This patch makes it
possible to do so.
It adds a GetMCRegisterInfo method to the ABI class, which every class
is expected to implement. Normally, it should be sufficient to obtain
the definitions from the appropriate llvm::Target object (for which I
provide a utility function), but the subclasses are free to construct it
in any way they deem fit.
We should be able to always get the MCRegisterInfo object from llvm,
with one important exception: if the relevant llvm target was disabled
at compile time. To handle this, I add a mechanism to disable the
compilation of ABI plugins based on the value of LLVM_TARGETS_TO_BUILD
cmake setting. This ensures all our existing are able to create their
MCRegisterInfo objects.
The new MCRegisterInfo api is not used yet, but the intention is to make
use of it in follow-up patches.
Reviewers: jasonmolenda, aprantl, JDevlieghere, tatyana-krasnukha
Subscribers: wuzish, nemanjai, mgorny, kbarton, atanasyan, lldb-commits
Differential Revision: https://reviews.llvm.org/D67965
llvm-svn: 372862
My apologies for the large patch. With the exception of ConstString.h
itself it was entirely produced by sed.
ConstString has exactly one const char * data member, so passing a
ConstString by reference is not any more efficient than copying it by
value. In both cases a single pointer is passed. But passing it by
value makes it harder to accidentally return the address of a local
object.
(This fixes rdar://problem/48640859 for the Apple folks)
Differential Revision: https://reviews.llvm.org/D59030
llvm-svn: 355553
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This patch removes the comments grouping header includes. They were
added after running IWYU over the LLDB codebase. However they add little
value, are often outdates and burdensome to maintain.
llvm-svn: 346626
that takes a prefix string. This simplifies the implementation and
allows plugins such as the Swift plugin to supply different prefixes
for return and error variables.
rdar://problem/39299889
Differential Revision: https://reviews.llvm.org/D46088
llvm-svn: 331235
so it can be shared across multiple language plugins.
In a multi-language project it is counterintuitive to have a result
variables reuse numbers just because they are using a different
language plugin in LLDB (but not for example, when they are
Objective-C versus C++, since they are both handled by Clang).
This is NFC on llvm.org except for the Go plugin.
rdar://problem/39299889
Differential Revision: https://reviews.llvm.org/D46083
llvm-svn: 331234
This is intended as a clean up after the big clang-format commit
(r280751), which unfortunately resulted in many of the comment
paragraphs in LLDB being very hard to read.
FYI, the script I used was:
import textwrap
import commands
import os
import sys
import re
tmp = "%s.tmp"%sys.argv[1]
out = open(tmp, "w+")
with open(sys.argv[1], "r") as f:
header = ""
text = ""
comment = re.compile(r'^( *//) ([^ ].*)$')
special = re.compile(r'^((([A-Z]+[: ])|([0-9]+ )).*)|(.*;)$')
for line in f:
match = comment.match(line)
if match and not special.match(match.group(2)):
# skip intentionally short comments.
if not text and len(match.group(2)) < 40:
out.write(line)
continue
if text:
text += " " + match.group(2)
else:
header = match.group(1)
text = match.group(2)
continue
if text:
filled = textwrap.wrap(text, width=(78-len(header)),
break_long_words=False)
for l in filled:
out.write(header+" "+l+'\n')
text = ""
out.write(line)
os.rename(tmp, sys.argv[1])
Differential Revision: https://reviews.llvm.org/D46144
llvm-svn: 331197
some methods in the ABI need a Process to do their work.
Instead of passing it in as a one-off argument to those
methods, this patch puts it in the base class and the methods
can retrieve if it needed.
Note that ABI's are sometimes built without a Process
(e.g. SBTarget::GetStackRedZoneSize) so it's entirely
possible that the process weak pointer will not be
able to reconsistitue into a strong pointer.
<rdar://problem/32526754>
llvm-svn: 306633
Also found/fixed one bug identified by this warning in
RenderScriptx86ABIFixups.cpp where a string literal was being used in an
effort to provide a name for an instruction/register, but was instead
being passed as the bool 'isVolatile' parameter.
llvm-svn: 291198
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
If the UnwindPlan did not identify how to unwind the stack pointer
register, LLDB currently assumes it can determine to caller's SP
from the current frame's CFA. This is true on most platforms
where CFA is by definition equal to the incoming SP at function
entry.
However, on the s390x target, we instead define the CFA to equal
the incoming SP plus an offset of 160 bytes. This is because
our ABI defines that the caller has to provide a register save
area of size 160 bytes. This area is allocated by the caller,
but is considered part of the callee's stack frame, and therefore
the CFA is defined as pointing to the top of this area.
In order to make this work on s390x, this patch introduces a new
ABI callback GetFallbackRegisterLocation that provides platform-
specific fallback register locations for unwinding. The existing
code to handle SP unwinding as well as volatile registers is moved
into the default implementation of that ABI callback, to allow
targets where that implementation is incorrect to override it.
This patch in itself is a no-op for all existing platforms.
But it is a pre-requisite for adding s390x support.
Differential Revision: http://reviews.llvm.org/D18977
llvm-svn: 266307
The ClangExpressionVariable::CreateVariableInList functions looked cute, but
caused more confusion than they solved. I removed them, and instead made sure
that there are adequate facilities for easily adding newly-constructed
ExpressionVariables to lists.
I also made some of the constructors that are common be generic, so that it's
possible to construct expression variables from generic places (like the ABI and
ValueObject) without having to know the specifics about the class.
llvm-svn: 249095
Also added some target-level search functions so that persistent variables and
symbols can be searched for without hand-iterating across the map of
TypeSystems.
llvm-svn: 249027
the corresponding TypeSystem. This makes sense because what kind of data there
is -- and how it can be looked up -- depends on the language.
Functionality that is common to all type systems is factored out into
PersistentExpressionState.
llvm-svn: 248934
There are still a bunch of dependencies on the plug-in, but this helps to
identify them.
There are also a few more bits we need to move (and abstract, for example the
ClangPersistentVariables).
llvm-svn: 248612
stores information about a variable that different parts of LLDB use, from the
compiler-specific portion that only the expression parser cares about.
http://reviews.llvm.org/D12602
llvm-svn: 246871
for eh_frame and stabs register numberings. This is not
complete but it's a step in the right direction. It's almost
entirely mechanical.
lldb informally uses "gcc register numbering" to mean eh_frame.
Why? Probably because there's a notorious bug with gcc on i386
darwin where the register numbers in eh_frame were incorrect.
In all other cases, eh_frame register numbering is identical to
dwarf.
lldb informally uses "gdb register numbering" to mean stabs.
There are no official definitions of stabs register numbers
for different architectures, so the implementations of gdb
and gcc are the de facto reference source.
There were some incorrect uses of these register number types
in lldb already. I fixed the ones that I saw as I made
this change.
This commit changes all references to "gcc" and "gdb" register
numbers in lldb to "eh_frame" and "stabs" to make it clear
what is actually being represented.
lldb cannot parse the stabs debug format, and given that no
one is using stabs any more, it is unlikely that it ever will.
A more comprehensive cleanup would remove the stabs register
numbers altogether - it's unnecessary cruft / complication to
all of our register structures.
In ProcessGDBRemote, when we get register definitions from
the gdb-remote stub, we expect to see "gcc:" (qRegisterInfo)
or "gcc_regnum" (qXfer:features:read: packet to get xml payload).
This patch changes ProcessGDBRemote to also accept "ehframe:"
and "ehframe_regnum" from these remotes.
I did not change GDBRemoteCommunicationServerLLGS or debugserver
to send these new packets. I don't know what kind of interoperability
constraints we might be working under. At some point in the future
we should transition to using the more descriptive names.
Throughout lldb we're still using enum names like "gcc_r0" and "gdb_r0",
for eh_frame and stabs register numberings. These should be cleaned
up eventually too.
The sources link cleanly on macosx native with xcode build. I
don't think we'll see problems on other platforms but please let
me know if I broke anyone.
llvm-svn: 245141
This is more preparation for multiple different kinds of types from different compilers (clang, Pascal, Go, RenderScript, Swift, etc).
llvm-svn: 244689
objects for the backlink to the lldb_private::Process. The issues we were
running into before was someone was holding onto a shared pointer to a
lldb_private::Thread for too long, and the lldb_private::Process parent object
would get destroyed and the lldb_private::Thread had a "Process &m_process"
member which would just treat whatever memory that used to be a Process as a
valid Process. This was mostly happening for lldb_private::StackFrame objects
that had a member like "Thread &m_thread". So this completes the internal
strong/weak changes.
Documented the ExecutionContext and ExecutionContextRef classes so that our
LLDB developers can understand when and where to use ExecutionContext and
ExecutionContextRef objects.
llvm-svn: 151009
result variable on a "finish" statement. The
ownership of the result value was not being properly
assigned to the newly-created persistent result
variable; now it is.
llvm-svn: 147587
Switch from GetReturnValue, which was hardly ever used, to GetReturnValueObject
which is much more convenient.
Return the "return value object" as a persistent variable if requested.
llvm-svn: 147157
as part of the thread format output.
Currently this is only done for the ThreadPlanStepOut.
Add a convenience API ABI::GetReturnValueObject.
Change the ValueObject::EvaluationPoint to BE an ExecutionContextScope, rather than
trying to hand out one of its subsidiary object's pointers. That way this will always
be good.
llvm-svn: 146806
plug-ins are add on plug-ins for the lldb_private::Process class that can add
thread contexts that are read from memory. It is common in kernels to have
a lot of threads that are not currently executing on any cores (JTAG debugging
also follows this sort of thing) and are context switched out whose state is
stored in memory data structures. Clients can now subclass the OperatingSystem
plug-ins and then make sure their Create functions correcltly only enable
themselves when the right binary/target triple are being debugged. The
operating system plug-ins get a chance to attach themselves to processes just
after launching or attaching and are given a lldb_private::Process object
pointer which can be inspected to see if the main executable, target triple,
or any shared libraries match a case where the OS plug-in should be used.
Currently the OS plug-ins can create new threads, define the register contexts
for these threads (which can all be different if desired), and populate and
manage the thread info (stop reason, registers in the register context) as
the debug session goes on.
llvm-svn: 138228
respective ABI plugins as they were plug-ins that supplied ABI specfic info.
Also hookep up the UnwindAssemblyInstEmulation so that it can generate the
unwind plans for ARM.
Changed the way ABI plug-ins are handed out when you get an instance from
the plug-in manager. They used to return pointers that would be mananged
individually by each client that requested them, but now they are handed out
as shared pointers since there is no state in the ABI objects, they can be
shared.
llvm-svn: 131193
now, in addition to cpu type/subtype and architecture flavor, contains:
- byte order (big endian, little endian)
- address size in bytes
- llvm::Triple for true target triple support and for more powerful plug-in
selection.
llvm-svn: 125602