A cast-like operation is one that converts from a set of input types to a set of output types. The arity of the inputs may be from 0-N, whereas the arity of the outputs may be anything from 1-N. Cast-like operations are removable in cases where they produce a "no-op", i.e when the input types and output types match 1-1.
Differential Revision: https://reviews.llvm.org/D94831
Continue the convergence between LLVM dialect and built-in types by replacing
the bfloat, half, float and double LLVM dialect types with their built-in
counterparts. At the API level, this is a direct replacement. At the syntax
level, we change the keywords to `bf16`, `f16`, `f32` and `f64`, respectively,
to be compatible with the built-in type syntax. The old keywords can still be
parsed but produce a deprecation warning and will be eventually removed.
Depends On D94178
Reviewed By: mehdi_amini, silvas, antiagainst
Differential Revision: https://reviews.llvm.org/D94179
The LLVM dialect type system has been closed until now, i.e. did not support
types from other dialects inside containers. While this has had obvious
benefits of deriving from a common base class, it has led to some simple types
being almost identical with the built-in types, namely integer and floating
point types. This in turn has led to a lot of larger-scale complexity: simple
types must still be converted, numerous operations that correspond to LLVM IR
intrinsics are replicated to produce versions operating on either LLVM dialect
or built-in types leading to quasi-duplicate dialects, lowering to the LLVM
dialect is essentially required to be one-shot because of type conversion, etc.
In this light, it is reasonable to trade off some local complexity in the
internal implementation of LLVM dialect types for removing larger-scale system
complexity. Previous commits to the LLVM dialect type system have adapted the
API to support types from other dialects.
Replace LLVMIntegerType with the built-in IntegerType plus additional checks
that such types are signless (these are isolated in a utility function that
replaced `isa<LLVMType>` and in the parser). Temporarily keep the possibility
to parse `!llvm.i32` as a synonym for `i32`, but add a deprecation notice.
Reviewed By: mehdi_amini, silvas, antiagainst
Differential Revision: https://reviews.llvm.org/D94178
BEGIN_PUBLIC
[mlir] Remove LLVMType, LLVM dialect types now derive Type directly
This class has become a simple `isa` hook with no proper functionality.
Removing will allow us to eventually make the LLVM dialect type infrastructure
open, i.e., support non-LLVM types inside container types, which itself will
make the type conversion more progressive.
Introduce a call `LLVM::isCompatibleType` to be used instead of
`isa<LLVMType>`. For now, this is strictly equivalent.
END_PUBLIC
Depends On D93681
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D93713
Implement Bug 46698, making ODS synthesize a getType() method that returns a
specific C++ class for OneResult methods where we know that class. This eliminates
a common source of casts in things like:
myOp.getType().cast<FIRRTLType>().getPassive()
because we know that myOp always returns a FIRRTLType. This also encourages
op authors to type their results more tightly (which is also good for
verification).
I chose to implement this by splitting the OneResult trait into itself plus a
OneTypedResult trait, given that many things are using `hasTrait<OneResult>`
to conditionalize various logic.
While this changes makes many many ops get more specific getType() results, it
is generally drop-in compatible with the previous behavior because 'x.cast<T>()'
is allowed when x is already known to be a T. The one exception to this is that
we need declarations of the types used by ops, which is why a couple headers
needed additional #includes.
I updated a few things in tree to remove the now-redundant `.cast<>`'s, but there
are probably many more than can be removed.
Differential Revision: https://reviews.llvm.org/D93790
Often times the legality of inlining can change depending on if the callable is going to be inlined in-place, or cloned. For example, some operations are not allowed to be duplicated and can only be inlined if the original callable will cease to exist afterwards. The new `wouldBeCloned` flag allows for dialects to hook into this when determining legality.
Differential Revision: https://reviews.llvm.org/D90360
In certain situations it isn't legal to inline a call operation, but this isn't something that is possible(at least not easily) to prevent with the current hooks. This revision adds a new hook so that dialects with call operations that shouldn't be inlined can prevent it.
Differential Revision: https://reviews.llvm.org/D90359
A recent commit introduced a new syntax for specifying builder arguments in
ODS, which is better amenable to automated processing, and deprecated the old
form. Transition all dialects as well as Linalg ODS generator to use the new
syntax.
Add a deprecation notice to ODS generator.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D90038
This revision introduces support for buffer allocation for any named linalg op.
To avoid template instantiating many ops, a new ConversionPattern is created to capture the LinalgOp interface.
Some APIs are updated to remain consistent with MLIR style:
`OwningRewritePatternList * -> OwningRewritePatternList &`
`BufferAssignmentTypeConverter * -> BufferAssignmentTypeConverter &`
Differential revision: https://reviews.llvm.org/D89226
The documentation needs a refresh now that "kinds" are no longer a concept. This revision also adds mentions to a few other new concepts, e.g. traits and interfaces.
Differential Revision: https://reviews.llvm.org/D86182
This greatly simplifies a large portion of the underlying infrastructure, allows for lookups of singleton classes to be much more efficient and always thread-safe(no locking). As a result of this, the dialect symbol registry has been removed as it is no longer necessary.
For users broken by this change, an alert was sent out(https://llvm.discourse.group/t/removing-kinds-from-attributes-and-types) that helps prevent a majority of the breakage surface area. All that should be necessary, if the advice in that alert was followed, is removing the kind passed to the ::get methods.
Differential Revision: https://reviews.llvm.org/D86121
This infrastructure has evolved a lot over the course of MLIRs lifetime, and has never truly been documented outside of rationale or proposals. This revision aims to document the infrastructure and user facing API, with the rationale specific portions moved to the Rationale folder and updated.
Differential Revision: https://reviews.llvm.org/D85260
This revision refactors the default definition of the attribute and type `classof` methods to use the TypeID of the concrete class instead of invoking the `kindof` method. The TypeID is already used as part of uniquing, and this allows for removing the need for users to define any of the type casting utilities themselves.
Differential Revision: https://reviews.llvm.org/D85356
Due to the original type system implementation, LLVMDialect in MLIR contains an
LLVMContext in which the relevant objects (types, metadata) are created. When
an MLIR module using the LLVM dialect (and related intrinsic-based dialects
NVVM, ROCDL, AVX512) is converted to LLVM IR, it could only live in the
LLVMContext owned by the dialect. The type system no longer relies on the
LLVMContext, so this limitation can be removed. Instead, translation functions
now take a reference to an LLVMContext in which the LLVM IR module should be
constructed. The caller of the translation functions is responsible for
ensuring the same LLVMContext is not used concurrently as the translation no
longer uses a dialect-wide context lock.
As an additional bonus, this change removes the need to recreate the LLVM IR
module in a different LLVMContext through printing and parsing back, decreasing
the compilation overhead in JIT and GPU-kernel-to-blob passes.
Reviewed By: rriddle, mehdi_amini
Differential Revision: https://reviews.llvm.org/D85443
Introduce support for mutable storage in the StorageUniquer infrastructure.
This makes MLIR have key-value storage instead of just uniqued key storage. A
storage instance now contains a unique immutable key and a mutable value, both
stored in the arena allocator that belongs to the context. This is a
preconditio for supporting recursive types that require delayed initialization,
in particular LLVM structure types. The functionality is exercised in the test
pass with trivial self-recursive type. So far, recursive types can only be
printed in parsed in a closed type system. Removing this restriction is left
for future work.
Differential Revision: https://reviews.llvm.org/D84171
MSVC 2017 doesn't support the case where a trailing variadic template list comes after template types with default parameters. Until we upgrade to VS 2019, we can't use the simplified definitions.
This revision removes the TypeConverter parameter passed to the apply* methods, and instead moves the responsibility of region type conversion to patterns. The types of a region can be converted using the 'convertRegionTypes' method, which acts similarly to the existing 'applySignatureConversion'. This method ensures that all blocks within, and including those moved into, a region will have the block argument types converted using the provided converter.
This has the benefit of making more of the legalization logic controlled by patterns, instead of being handled explicitly by the driver. It also opens up the possibility to support multiple type conversions at some point in the future.
This revision also adds a new utility class `FailureOr<T>` that provides a LogicalResult friendly facility for returning a failure or a valid result value.
Differential Revision: https://reviews.llvm.org/D81681
Use ::Adaptor alias instead uniformly. Makes the naming more consistent as
adaptor can refer to attributes now too.
Differential Revision: https://reviews.llvm.org/D81789
Summary:
- Fix comments in several places
- Eliminate extra ' in AST dump and adjust tests accordingly
Differential Revision: https://reviews.llvm.org/D78399
Summary:
This makes a common pattern of
`dyn_cast_or_null<OpTy>(v.getDefiningOp())` more concise.
Differential Revision: https://reviews.llvm.org/D79681
As we start defining more complex Ops, we increasingly see the need for
Ops-with-regions to be able to construct Ops within their regions in
their ::build methods. However, these methods only have access to
Builder, and not OpBuilder. Creating a local instance of OpBuilder
inside ::build and using it fails to trigger the operation creation
hooks in derived builders (e.g., ConversionPatternRewriter). In this
case, we risk breaking the logic of the derived builder. At the same
time, OpBuilder::create, which is by far the largest user of ::build
already passes "this" as the first argument, so an OpBuilder instance is
already available.
Update all ::build methods in all Ops in MLIR and Flang to take
"OpBuilder &" instead of "Builder *". Note the change from pointer and
to reference to comply with the common style in MLIR, this also ensures
all other users must change their ::build methods.
Differential Revision: https://reviews.llvm.org/D78713
Summary:
The tests referred to in Chapter 3 of the tutorial were missing from the tutorial test
directory; this adds those missing tests. This also cleans up some stale directory paths and code
snippets used throughout the tutorial.
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, aartbik, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76809
These have proved incredibly useful for interleaving values between a range w.r.t to streams. After this revision, the mlir/Support/STLExtras.h is empty. A followup revision will remove it from the tree.
Differential Revision: https://reviews.llvm.org/D78067
Summary:
This revision performs a few refactorings on the main docs folder. Namely it:
* Adds a new Rationale/ folder to contain various rationale documents
* Moves several "getting started" documents to the Tutorials/ folder
* Cleans up the titles of various documents
Differential Revision: https://reviews.llvm.org/D77934
This revision removes all of the CRTP from the pass hierarchy in preparation for using the tablegen backend instead. This creates a much cleaner interface in the C++ code, and naturally fits with the rest of the infrastructure. A new utility class, PassWrapper, is added to replicate the existing behavior for passes not suitable for using the tablegen backend.
Differential Revision: https://reviews.llvm.org/D77350
ModulePass doesn't provide any special utilities and thus doesn't give enough benefit to warrant a special pass class. This revision replaces all usages with the more general OperationPass.
Differential Revision: https://reviews.llvm.org/D77339
Summary:
Change AffineOps Dialect structure to better group both IR and Tranforms. This included extracting transforms directly related to AffineOps. Also move AffineOps to Affine.
Differential Revision: https://reviews.llvm.org/D76161
HasNoSideEffect can now be implemented using the MemoryEffectInterface, removing the need to check multiple things for the same information. This also removes an easy foot-gun for users as 'Operation::hasNoSideEffect' would ignore operations that dynamically, or recursively, have no side effects. This also leads to an immediate improvement in some of the existing users, such as DCE, now that they have access to more information.
Differential Revision: https://reviews.llvm.org/D76036
The interfaces themselves aren't really analyses, they may be used by analyses though. Having them in Analysis can also create cyclic dependencies if an analysis depends on a specific dialect, that also provides one of the interfaces.
Differential Revision: https://reviews.llvm.org/D75867
Summary:
* add missing comma.
* remove "having to register them here" phrasing, since register it
is what we're doing, which made the comment a bit confusing.
* remove duplicate code.
* clarify link to chapter 3, since "folder" doesn't appear in that
chapter.
Differential Revision: https://reviews.llvm.org/D75263
Summary:
* Use bold font (not monospace) for legal/illegal.
* Say a few words about operation<->dialect precedence.
* Omit duplicate code samples.
* Indent items in bullet-point list.
Differential Revision: https://reviews.llvm.org/D75262
Summary:
* Let's use "override" when we're just doing standard baseclassing.
("Specialization" makes it sound like template specialization, which
this is not.)
* CallInterfaces.td has an include guard, so #ifdef not needed anymore.
* Omit duplicate code in code samples.
* Clarify which algorithm we're talking about.
* Mention that the ShapeInference code is code a snippet that belongs to
algorithm discussed in the paragraph above it.
* Add missing definition for createShapeInferencePass.
Differential Revision: https://reviews.llvm.org/D75260
Summary:
This details the C++ format as well as the new declarative format. This has been one of the major missing pieces from the toy tutorial.
Differential Revision: https://reviews.llvm.org/D74938
We have one title in every doc which corresponds to `#`, in the some
there are multiple and it is expected to be h1 headers (visual elements
rather than organizational). Indent every nesting by one in all of the
docs with multiple titles.
Also fixing trailing whitespace.
I used the codemod python tool to do this with the following commands:
codemod 'tensorflow/mlir/blob/master/include' 'llvm/llvm-project/blob/master/mlir/include'
codemod 'tensorflow/mlir/blob/master' 'llvm/llvm-project/blob/master/mlir'
codemod 'tensorflow/mlir' 'llvm-project/llvm'
Differential Revision: https://reviews.llvm.org/D72244